C++ 学习笔记之基础篇
xcbyao 小妖

0x00 Preface

这个假期打算入门 C++,为后期刷 leetcode 做准备,此笔记主要整理不同于 C 的地方,补充之前没写到的细节,尤其是面向对象部分,面向有 C 基础人群~

0x01 Main

  • 注:C++ 在创建变量时,必须给变量一个初始值,否则会报错

关键字

asm do if return typedef
auto double inline short typeid
bool dynamic_cast int signed typename
break else long sizeof union
case enum mutable static unsigned
catch explicit namespace static_cast using
char export new struct virtual
class extern operator switch void
const false private template volatile
const_cast float protected this wchar_t
continue for public throw while
default friend register true
delete goto reinterpret_cast try
  • 字符型变量并不是把字符本身放到内存中存储,而是将对应的ASCII编码放入到存储单元。

转义字符

转义字符 含义 ASCII 码值(十进制)
\a 警报 007
\b 退格(BS) ,将当前位置移到前一列 008
\f 换页(FF),将当前位置移到下页开头 012
\n 换行(LF) ,将当前位置移到下一行开头 010
\r 回车(CR) ,将当前位置移到本行开头 013
\t 水平制表(HT) (跳到下一个TAB位置) 009
\v 垂直制表(VT) 011
*\\* 代表一个反斜线字符 092
' 代表一个单引号字符 039
" 代表一个双引号字符 034
? 代表一个问号 063
\0 数字 0 000
\ddd 8进制转义字符,d 范围 0~7 3位8进制
\xhh 16进制转义字符,h 范围 09,af,A~F 3位16进制
  • 字符串型 string 变量名 = "字符串值"

注:需加入 #include <string>

输入:cin >> 变量名
输出:cout << 变量名

  • 只有整型变量可以进行取模运算

  • switch 语句中表达式类型只能是整型或者字符型

  • 值传递时,形参是修饰不了实参的;地址/指针传递可改变

  • 在头文件中写函数声明,在源文件中写函数定义

指针

  • 空指针:指针变量指向内存中编号为 0 的空间(内存编号 0 ~255 为系统占用内存,不允许用户访问)

  • 野指针:指针变量指向非法的内存空间

  • const 修饰指针 — 常量指针 //指针指向可以改,指针指向的值不可以更改
    const 修饰常量 — 指针常量 //指针指向不可以改,指针指向的值可以更改

看 const 右侧紧跟着的是指针还是常量, 是指针就是常量指针,是常量就是指针常量

内存分区模型

C++ 程序在执行时,内存分为:

  • 程序运行前:
    • 代码区:存放函数体的二进制代码,由操作系统进行管理的,特点是共享和只读
    • 全局区:存放全局变量、静态变量、常量
      • 常量区:存放全局常量、字符串常量
  • 程序运行后:
    • 栈区:由编译器自动分配释放,存放函数的参数值、局部变量、局部常量

      注:不要返回局部变量的地址

    • 堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收

利用 new 在堆区开辟内存,new 创建的数据,会返回该数据类型的指针;利用 delete 释放

1
2
3
4
5
int* a = new int(10);
delete a;

int* arr = new int[10];
delete[] arr;

引用

数据类型 &别名 = 原名

  • 引用必须初始化,且初始化后,不可以改变

  • 函数传参时,可以利用引用让形参修饰实参,简化指针修改实参

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
//1. 值传递
void mySwap01(int a, int b) {
int temp = a;
a = b;
b = temp;
}

//2. 地址传递
void mySwap02(int* a, int* b) {
int temp = *a;
*a = *b;
*b = temp;
}

//3. 引用传递
void mySwap03(int& a, int& b) {
int temp = a;
a = b;
b = temp;
}
  • 如果函数做左值,那么必须返回引用
1
2
3
4
5
6
7
//返回静态变量引用
int& test() {
static int a = 20;
return a;
}

test() = 1000;
  • 引用的本质在 C++ 内部实现是一个指针常量
    int& ref = a; = int* const ref = &a

  • 常量引用用来修饰形参,防止形参改变实参
    void showValue(const int& v)

1
2
3
//int& ref = 10;  引用本身需要一个合法的内存空间,因此这行错误
//加入const就可以了,编译器优化代码,int temp = 10; const int& ref = temp;
const int& ref = 10;

函数提高

1
2
3
4
5
6
7
8
9
10
//如果某个位置参数有默认值,那么从这个位置往后,从左向右,必须都要有默认值
int func(int a, int b = 10, int c = 10) {
return a + b + c;
}

//如果函数声明有默认值,函数实现的时候就不能有默认参数
int func2(int a = 10, int b = 10);
int func2(int a, int b) {
return a + b;
}
1
2
//函数占位参数,调用函数时必须填补
void func(int a, int) {}

函数重载满足条件:

  • 同一个作用域下
  • 函数名称相同
  • 函数参数类型不同 或 个数不同 或 顺序不同

函数的返回值不可以作为函数重载的条件
引用可以作为重载条件
函数重载碰到函数默认参数,产生歧义,需要避免

类和对象

C++ 面向对象的三大特性:封装、继承、多态

对象上有其属性和行为,具有相同性质的对象,可以抽象称为类

封装

  1. 类在设计时,属性和行为写在一起,表现事物
    class 类名{ 访问权限: 属性 / 行为 };

  2. 类在设计时,可以把属性和行为放在不同权限下加以控制

访问权限:

  • public 公共权限

  • protected 保护权限

  • private 私有权限

  • struct 默认权限为公共

  • class 默认权限为私有

对象的初始化和清理

编译器提供的构造函数和析构函数是空实现。

  • 构造函数:创建对象时为对象的成员属性赋值,构造函数由编译器自动调用
  • 析构函数:对象销毁前系统自动调用,执行一些清理工作

构造函数语法:类名(){}

析构函数语法:~类名(){}

  1. 构造 / 析构函数,没有返回值也不写 void
  2. 函数名称与类名相同
  3. 构造 / 析构函数可以 / 不可以有参数,因此可以 / 不可以发生重载
  4. 程序在 调用对象时 / 对象销毁前 会自动调用构造 / 析构,无须手动调用,而且只会调用一次

​按参数分为:有参 / 无参构造(默认构造函数)
​按类型分为:普通 / 拷贝构造

调用方式:括号法 Person p1(10);、​显示法 Person p2 = Person(10); 、​隐式转换法 Person p3 = 10;

注:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
Person(10) 单独写就是匿名对象,当前行结束之后,马上析构
Person p4(p3); 不能利用 拷贝构造函数 初始化匿名对象,编译器认为是对象声明

1
2
3
4
//拷贝构造函数
Person(const Person& p) {
age = p.age;
}

拷贝构造函数调用时机通常有三种情况:

  1. 使用一个已经创建完毕的对象来初始化一个新对象

    1
    2
    3
    4
    5
    void test01() {
    Person man(100); //p对象已经创建完毕
    Person newman(man); //调用拷贝构造函数
    Person newman2 = man; //拷贝构造
    }
  2. 值传递的方式给函数参数传值

    1
    2
    3
    4
    5
    6
    //相当于 Person p1 = p;
    void doWork(Person p1) {}
    void test02() {
    Person p; //无参构造函数
    doWork(p);
    }
  3. 以值方式返回局部对象

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    Person doWork2() {
    Person p1;
    cout << (int *)&p1 << endl;
    return p1;
    }

    void test03() {
    Person p = doWork2();
    cout << (int *)&p << endl;
    }

    默认情况下,C++ 编译器至少给一个类添加 3 个函数

  4. 默认构造函数(无参,函数体为空)

  5. 默认析构函数(无参,函数体为空)

  6. 默认拷贝构造函数,对属性进行值拷贝

构造函数调用规则如下:

  • 如果用户定义有参构造函数,C++ 不再提供默认无参构造,但是会提供默认拷贝构造
  • 如果用户定义拷贝构造函数,C++ 不再提供其他构造函数

深浅拷贝是面试经典问题,也是常见的一个坑

  • 浅拷贝:简单的赋值拷贝操作
  • 深拷贝:在堆区重新申请空间,进行拷贝操作
1
2
3
Person(const Person& p) {
m_height = new int(*p.m_height);
}

如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题
如果属性有在堆区开辟的,一定要自己提供拷贝构造函数,防止浅拷贝带来的问题

C++ 提供了初始化列表语法,用来初始化属性

构造函数():属性1(值1),属性2(值2)... {}

1
2
3
4
5
6
7
8
9
//传统方式初始化
Person(int a, int b, int c) {
m_A = a;
m_B = b;
m_C = c;
}

//初始化列表方式初始化
Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
  • 类对象作为类成员
    类中的成员可以是另一个类的对象,我们称该成员为 对象成员
    先调用对象成员的构造,再调用本类构造,析构顺序与构造相反

  • 静态成员变量
    所有对象共享同一份数据
    在编译阶段分配内存
    类内声明,类外初始化

    • 静态成员变量两种访问方式
      1
      2
      3
      4
      5
      6
      7
      //1、通过对象
      Person p1;
      p1.m_A = 100;
      cout << "p1.m_A = " << p1.m_A << endl; //链式编程

      //2、通过类名
      cout << "m_A = " << Person::m_A << endl;
  • 静态成员函数
    所有对象共享同一个函数
    静态成员函数只能访问静态成员变量

    • 静态成员变量两种访问方式
      1
      2
      3
      4
      5
      6
      //1、通过对象
      Person p1;
      p1.func();

      //2、通过类名
      Person::func();
  • 类内的成员变量和成员函数分开存储,只有非静态成员变量才属于类的对象上,静态成员变量/函数不占对象空间,函数也不占对象空间,所有函数共享一个函数实例

this 指针指向被调用的成员函数所属的对象,是隐含每一个非静态成员函数内的一种指针,不需要定义,直接使用即可

用途:

  • 当形参和成员变量同名时,可用 this 指针来区分

    1
    2
    3
    Person(int age) {
    this->age = age;
    }
  • 在类的非静态成员函数中返回对象本身,可使用 return *this

  • 空指针,可以调用成员函数,但如果成员函数中用到了 this 指针,就不可以了

    1
    2
    3
    4
    void test() {
    Person * p = NULL;
    p->ShowClassName();
    }

    const 修饰成员函数

    常函数:

  • 成员函数后加 const 后我们称为这个函数为常函数

  • 常函数内不可以修改成员属性

  • 成员属性声明时加关键字 mutable 后,在常函数中依然可以修改

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    //this 指针的本质是一个指针常量,指针的指向不可修改
    //如果想让指针指向的值也不可以修改,需要声明常函数
    void ShowPerson() const {
    //const Type* const pointer;
    //this = NULL; //不能修改指针的指向 Person* const this;

    //const 修饰成员函数,表示指针指向的内存空间的数据不能修改,除了 mutable 修饰的变量
    this->m_B = 100;
    }

    mutable int m_B;

    常对象:

  • 声明对象前加 const 称该对象为常对象

  • 常对象只能调用常函数

    1
    2
    3
    4
    const Person person;
    cout << person.m_A << endl;
    //person.mA = 100; //常对象不能修改成员变量的值,但是可以访问
    person.m_B = 100; //但是常对象可以修改 mutable 修饰成员变量

    友元

    让一个函数或类访问另一个类中私有成员,关键字 friend

友元的三种实现:

  • 全局函数做友元

    1
    2
    3
    4
    class Building {
    //告诉编译器 goodGay 全局函数 是 Building 类的好朋友,可以访问类中的私有内容
    friend void goodGay(Building * building);
    }
  • 类做友元

    1
    2
    3
    4
    class Building {
    //告诉编译器 goodGay 类是 Building 类的好朋友,可以访问到 Building 类中私有内容
    friend class goodGay;
    }
  • 成员函数做友元

    1
    2
    3
    4
    class Building {
    //告诉编译器 goodGay 类中的 visit 成员函数是 Building 好朋友,可以访问私有内容
    friend void goodGay::visit();
    }

    运算符重载

    对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型

  • 加号运算符重载
    作用:实现两个自定义数据类型相加的运算

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//全局函数实现 + 号运算符重载
Person operator+(const Person& p1, const Person& p2) {
Person temp(0, 0);
temp.m_A = p1.m_A + p2.m_A;
temp.m_B = p1.m_B + p2.m_B;
return temp;
}

//运算符重载 可以发生函数重载
Person operator+(const Person& p2, int val) {
Person temp;
temp.m_A = p2.m_A + val;
temp.m_B = p2.m_B + val;
return temp;
}

Person p3 = p2 + 10; //相当于 operator+(p2,10)

总结:对于内置的数据类型的表达式的的运算符是不可能改变的,不要滥用运算符重载

  • 左移运算符重载
    作用:重载左移运算符配合友元可以输出自定义数据类型
1
2
3
4
5
6
//全局函数实现左移重载
//ostream对象只能有一个
ostream& operator<<(ostream& out, Person& p) {
out << "a:" << p.m_A << " b:" << p.m_B;
return out;
}
  • 递增运算符重载
    作用:通过重载递增运算符,实现自己的整型数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
MyInteger() {
m_Num = 0;
}

//前置++
MyInteger& operator++() {
//先++
m_Num++;
//再返回
return *this; //前置递增返回引用
}

//后置++
MyInteger operator++(int) {
//先返回
MyInteger temp = *this; //记录当前本身的值,然后让本身的值加 1,但是返回的是以前的值,达到先返回后 ++
m_Num++;
return temp; //后置递增返回值
}
  • 赋值运算符重载
    C++ 编译器至少给一个类添加 4 个函数
  1. 默认构造函数(无参,函数体为空)
  2. 默认析构函数(无参,函数体为空)
  3. 默认拷贝构造函数,对属性进行值拷贝
  4. 赋值运算符 operator=,对属性进行值拷贝

如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
//重载赋值运算符
Person& operator=(Person &p) {
if (m_Age != NULL) {
delete m_Age;
m_Age = NULL;
}
//编译器提供的代码是浅拷贝
//m_Age = p.m_Age;

//提供深拷贝 解决浅拷贝的问题
m_Age = new int(*p.m_Age);

//返回自身
return *this;
}
  • 关系运算符重载
    作用:可以让两个自定义类型对象进行对比操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
bool operator==(Person & p) {
if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) {
return true;
}
else {
return false;
}
}

bool operator!=(Person & p) {
if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) {
return false;
}
else {
return true;
}
}
  • 函数调用 () 运算符重载
    • 由于重载后使用的方式非常像函数的调用,因此称为仿函数
    • 仿函数没有固定写法,非常灵活
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class MyAdd {
public:
int operator()(int v1, int v2) {
return v1 + v2;
}
};

void test02() {
MyAdd add;
int ret = add(10, 10);
cout << "ret = " << ret << endl;

//匿名对象调用
cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
}

继承

class 子类 : 继承方式 父类 可以减少重复的代码

class A : public B;

A 类称为子类 / 派生类

B 类称为父类 / 基类

  • 从父类继承过来的成员,哪些属于子类对象中?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Base {
public:
int m_A;
protected:
int m_B;
private:
int m_C; //私有成员只是被隐藏了,但是还是会继承下去,只是由编译器给隐藏后访问不到
};

//公共继承
class Son :public Base {
public:
int m_D;
};

void test01() {
cout << "sizeof Son = " << sizeof(Son) << endl;
}

int main() {
test01();
return 0;
}
  • 继承中构造和析构顺序
    继承中先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反

  • 继承同名成员处理方式
    访问子类同名成员 直接访问即可
    访问父类同名成员 需要加作用域

同名静态成员处理方式和非静态处理方式一样,只不过有两种访问的方式(通过对象 和 通过类名)

  • 多继承语法
    C++ 允许一个类继承多个类,但实际开发中不建议用多继承

语法:class 子类:继承方式 父类1 ,继承方式 父类2...

多继承可能会引发父类中有同名成员出现,需要加作用域区分

菱形 (钻石) 继承

​两个派生类继承同一个基类,又有某个类同时继承者两个派生类

菱形继承问题:

  1. 羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。
  2. 草泥马继承自动物的数据继承了两份,而这份数据我们只需要一份。
1
2
3
4
5
6
7
8
9
10
class Animal {
public:
int m_Age;
};

//继承前加 virtual 关键字后,变为虚继承
//此时公共的父类 Animal 称为虚基类
class Sheep : virtual public Animal {};
class Tuo : virtual public Animal {};
class SheepTuo : public Sheep, public Tuo {};

多态

  • 静态多态:函数重载、运算符重载,复用函数名
  • 动态多态:派生类和虚函数实现运行时多态

区别:

  • 静态多态的函数地址早绑定 - 编译阶段确定函数地址
  • 动态多态的函数地址晚绑定 - 运行阶段确定函数地址
1
2
3
4
5
6
7
8
9
class Animal {
public:
//函数前加上 virtual 关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了
virtual void speak() {}
};

//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编

多态满足条件:

  1. 有继承关系
  2. 子类重写父类中的虚函数
    重写:函数返回值类型 函数名 参数列表 完全一致称为重写

多态使用:父类指针或引用指向子类对象

多态的优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护

纯虚函数和抽象类

在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容,因此将虚函数改为纯虚函数

纯虚函数语法:virtual 返回值类型 函数名 (参数列表) = 0;

当类中有了纯虚函数,这个类也称为抽象类

抽象类特点:

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Base {
public:
virtual void func() = 0;
};
class Son :public Base {
public:
virtual void func() {
cout << "func调用" << endl;
};
};

void test01() {
Base * base = NULL;
//base = new Base; // 错误,抽象类无法实例化对象
base = new Son;
base->func();
delete base;
}
虚析构和纯虚析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码,会导致子类对象可能清理不干净,造成内存泄漏

解决方式:将父类中的析构函数改为虚析构或者纯虚析构

共性:

  • 可以解决父类指针释放子类对象
  • 都需要有具体的函数实现

区别:

  • 如果是纯虚析构,该类属于抽象类,无法实例化对象

虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;
类名::~类名(){}

总结:

​1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象

​2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构

​3. 拥有纯虚析构函数的类也属于抽象类

文件操作

头文件 <fstream>

操作文件的三大类:

  • ofstream:写操作
  • ifstream:读操作
  • fstream :读写操作

文件类型分为:文本文件(ASCII码)、二进制文件

打开方式 解释
ios::in 为读文件而打开文件
ios::out 为写文件而打开文件
ios::ate 初始位置:文件尾
ios::app 追加方式写文件
ios::trunc 如果文件存在先删除,再创建
ios::binary 二进制方式

注:文件打开方式可以配合使用,利用 | 操作符

写文件

  1. 创建流对象
    ofstream ofs;

  2. 打开文件
    ofs.open("文件路径",打开方式);

  3. 写数据
    ofs << "写入的数据";

  4. 关闭文件
    ofs.close();

读文件

读文件与写文件步骤相似,但读取方式比较多

  1. 创建流对象
    ifstream ifs;

  2. 打开文件并判断文件是否打开成功
    ifs.open("文件路径",打开方式);

  3. 读数据(四种方式)

  4. 关闭文件
    ifs.close();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
//利用 is_open 函数可以判断文件是否打开成功
if (!ifs.is_open()) {
cout << "文件打开失败" << endl;
return;
}

//第一种方式
char buf[1024] = { 0 };
while (ifs >> buf) {
cout << buf << endl;
}

//第二种
char buf[1024] = { 0 };
while (ifs.getline(buf, sizeof(buf))) {
cout << buf << endl;
}

//第三种
string buf;
while (getline(ifs, buf)) {
cout << buf << endl;
}

char c;
while ((c = ifs.get()) != EOF) {
cout << c;
}

ifs.close();

二进制文件

打开方式要指定为 ios::binary

写文件

主要利用流对象调用成员函数 write

函数原型:ostream& write(const char * buffer, int len);

参数解释:字符指针 buffer 指向内存中一段存储空间,len 是读写的字节数

读文件

主要利用流对象调用成员函数 read

函数原型:istream& read(char *buffer, int len);

C++ advanced

模板

模板不可以直接使用,它只是一个框架;编程思想:泛型编程;提供两种机制:函数模板和类模板

作用:
建立一个通用函数(类),函数返回值类型和形参类型(类中的成员数据类型)可以不具体制定,用一个虚拟的类型来代表,将类型参数化

语法:

1
2
template<typename T> t //关键字 template 声明创建模板;typename 可用 class 代替;T 通用的数据类型,通常为大写字母
函数声明/定义(类)

函数模板

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
//交换整型函数
void swapInt(int& a, int& b) {
int temp = a;
a = b;
b = temp;
}

//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b) {
T temp = a;
a = b;
b = temp;
}

void test01()
{
int a = 10;
int b = 20;

//swapInt(a, b);

//利用模板实现交换
//1、自动类型推导
mySwap(a, b);

//2、显示指定类型
mySwap<int>(a, b);

cout << "a = " << a << endl;
cout << "b = " << b << endl;

}

int main() {

test01();

system("pause");

return 0;
}

总结:

使用函数模板有两种方式:自动类型推导、显示指定类型

注意事项:

自动类型推导,必须推导出一致的数据类型 T,才可以使用

模板必须要确定出 T 的数据类型,才可以使用

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
//利用模板提供通用的交换函数
template<class T>
void mySwap(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}


// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{
int a = 10;
int b = 20;
char c = 'c';

mySwap(a, b); // 正确,可以推导出一致的T
//mySwap(a, c); // 错误,推导不出一致的T类型
}


// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{
cout << "func 调用" << endl;
}

void test02()
{
//func(); //错误,模板不能独立使用,必须确定出T的类型
func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}

int main() {

test01();
test02();

system("pause");

return 0;
}

普通函数与函数模板区别:

普通函数调用时可以发生自动类型转换(隐式类型转换)
函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
如果利用显示指定类型的方式,可以发生隐式类型转换

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
//普通函数
int myAdd01(int a, int b)
{
return a + b;
}

//函数模板
template<class T>
T myAdd02(T a, T b)
{
return a + b;
}

//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{
int a = 10;
int b = 20;
char c = 'c';

cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99

//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换

myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}

int main() {

test01();

system("pause");

return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

普通函数与函数模板的调用规则
调用规则如下:

如果函数模板和普通函数都可以实现,优先调用普通函数
可以通过空模板参数列表来强制调用函数模板
函数模板也可以发生重载
如果函数模板可以产生更好的匹配,优先调用函数模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
cout << "调用的普通函数" << endl;
}

template<typename T>
void myPrint(T a, T b)
{
cout << "调用的模板" << endl;
}

template<typename T>
void myPrint(T a, T b, T c)
{
cout << "调用重载的模板" << endl;
}

void test01()
{
//1、如果函数模板和普通函数都可以实现,优先调用普通函数
// 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
int a = 10;
int b = 20;
myPrint(a, b); //调用普通函数

//2、可以通过空模板参数列表来强制调用函数模板
myPrint<>(a, b); //调用函数模板

//3、函数模板也可以发生重载
int c = 30;
myPrint(a, b, c); //调用重载的函数模板

//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
char c1 = 'a';
char c2 = 'b';
myPrint(c1, c2); //调用函数模板
}

int main() {

test01();

system("pause");

return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

模板的局限性

1
2
3
4
5
template<class T>
void f(T a, T b)
{
a = b;
}

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

1
2
3
4
5
template<class T>
void f(T a, T b)
{
if(a > b) { ... }
}

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include<iostream>
using namespace std;

#include <string>

class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};

//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{
if (a == b)
{
return true;
}
else
{
return false;
}
}


//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{
if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age)
{
return true;
}
else
{
return false;
}
}

void test01()
{
int a = 10;
int b = 20;
//内置数据类型可以直接使用通用的函数模板
bool ret = myCompare(a, b);
if (ret)
{
cout << "a == b " << endl;
}
else
{
cout << "a != b " << endl;
}
}

void test02()
{
Person p1("Tom", 10);
Person p2("Tom", 10);
//自定义数据类型,不会调用普通的函数模板
//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
bool ret = myCompare(p1, p2);
if (ret)
{
cout << "p1 == p2 " << endl;
}
else
{
cout << "p1 != p2 " << endl;
}
}

int main() {

test01();

test02();

system("pause");

return 0;
}

利用具体化的模板,可以解决自定义类型的通用化
学习模板并不是为了写模板,而是在STL能够运用系统提供的模板

函数模板案例
案例描述:

利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
排序规则从大到小,排序算法为选择排序
分别利用char数组和int数组进行测试

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{
T temp = a;
a = b;
b = temp;
}


template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{
for (int i = 0; i < len; i++)
{
int max = i; //最大数的下标
for (int j = i + 1; j < len; j++)
{
if (arr[max] < arr[j])
{
max = j;
}
}
if (max != i) //如果最大数的下标不是i,交换两者
{
mySwap(arr[max], arr[i]);
}
}
}
template<typename T>
void printArray(T arr[], int len) {

for (int i = 0; i < len; i++) {
cout << arr[i] << " ";
}
cout << endl;
}
void test01()
{
//测试char数组
char charArr[] = "bdcfeagh";
int num = sizeof(charArr) / sizeof(char);
mySort(charArr, num);
printArray(charArr, num);
}

void test02()
{
//测试int数组
int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };
int num = sizeof(intArr) / sizeof(int);
mySort(intArr, num);
printArray(intArr, num);
}

int main() {

test01();
test02();

system("pause");

return 0;
}

类模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <string>
//类模板
template<class NameType, class AgeType>
class Person
{
public:
Person(NameType name, AgeType age)
{
this->mName = name;
this->mAge = age;
}
void showPerson()
{
cout << "name: " << this->mName << " age: " << this->mAge << endl;
}
public:
NameType mName;
AgeType mAge;
};

void test01()
{
// 指定NameType 为string类型,AgeType 为 int类型
Person<string, int>P1("孙悟空", 999);
P1.showPerson();
}

int main() {

test01();

system("pause");

return 0;
}

类模板与函数模板区别主要有两点:

类模板没有自动类型推导的使用方式
类模板在模板参数列表中可以有默认参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <string>
//类模板
template<class NameType, class AgeType = int>
class Person
{
public:
Person(NameType name, AgeType age)
{
this->mName = name;
this->mAge = age;
}
void showPerson()
{
cout << "name: " << this->mName << " age: " << this->mAge << endl;
}
public:
NameType mName;
AgeType mAge;
};

//1、类模板没有自动类型推导的使用方式
void test01()
{
// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导
Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板
p.showPerson();
}

//2、类模板在模板参数列表中可以有默认参数
void test02()
{
Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数
p.showPerson();
}

int main() {

test01();

test02();

system("pause");

return 0;
}

类模板中成员函数和普通类中成员函数创建时机是有区别的:

普通类中的成员函数一开始就可以创建
类模板中的成员函数在调用时才创建

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class Person1
{
public:
void showPerson1()
{
cout << "Person1 show" << endl;
}
};

class Person2
{
public:
void showPerson2()
{
cout << "Person2 show" << endl;
}
};

template<class T>
class MyClass
{
public:
T obj;

//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成

void fun1() { obj.showPerson1(); }
void fun2() { obj.showPerson2(); }

};

void test01()
{
MyClass<Person1> m;

m.fun1();

//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}

int main() {

test01();

system("pause");

return 0;
}

类模板对象做函数参数
学习目标:

类模板实例化出的对象,向函数传参的方式
一共有三种传入方式:

指定传入的类型 — 直接显示对象的数据类型
参数模板化 — 将对象中的参数变为模板进行传递
整个类模板化 — 将这个对象类型 模板化进行传递

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <string>
//类模板
template<class NameType, class AgeType = int>
class Person
{
public:
Person(NameType name, AgeType age)
{
this->mName = name;
this->mAge = age;
}
void showPerson()
{
cout << "name: " << this->mName << " age: " << this->mAge << endl;
}
public:
NameType mName;
AgeType mAge;
};

//1、指定传入的类型
void printPerson1(Person<string, int> &p)
{
p.showPerson();
}
void test01()
{
Person <string, int >p("孙悟空", 100);
printPerson1(p);
}

//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{
p.showPerson();
cout << "T1的类型为: " << typeid(T1).name() << endl;
cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{
Person <string, int >p("猪八戒", 90);
printPerson2(p);
}

//3、整个类模板化
template<class T>
void printPerson3(T & p)
{
cout << "T的类型为: " << typeid(T).name() << endl;
p.showPerson();

}
void test03()
{
Person <string, int >p("唐僧", 30);
printPerson3(p);
}

int main() {

test01();
test02();
test03();

system("pause");

return 0;
}

通过类模板创建的对象,可以有三种方式向函数中进行传参
使用比较广泛是第一种:指定传入的类型

当类模板碰到继承时,需要注意一下几点:

当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
如果不指定,编译器无法给子类分配内存
如果想灵活指定出父类中T的类型,子类也需变为类模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
template<class T>
class Base
{
T m;
};

//class Son:public Base //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};
void test01()
{
Son c;
}

//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:
Son2()
{
cout << typeid(T1).name() << endl;
cout << typeid(T2).name() << endl;
}
};

void test02()
{
Son2<int, char> child1;
}


int main() {

test01();

test02();

system("pause");

return 0;
}

类模板成员函数类外实现
学习目标:能够掌握类模板中的成员函数类外实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <string>

//类模板中成员函数类外实现
template<class T1, class T2>
class Person {
public:
//成员函数类内声明
Person(T1 name, T2 age);
void showPerson();

public:
T1 m_Name;
T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
this->m_Name = name;
this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

void test01()
{
Person<string, int> p("Tom", 20);
p.showPerson();
}

int main() {

test01();

system("pause");

return 0;
}

总结:类模板中成员函数类外实现时,需要加上模板参数列表

类模板分文件编写
学习目标:

掌握类模板成员函数分文件编写产生的问题以及解决方式
问题:

类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到
解决:

解决方式1:直接包含.cpp源文件
解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制

person.hpp中代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#pragma once
#include <iostream>
using namespace std;
#include <string>

template<class T1, class T2>
class Person {
public:
Person(T1 name, T2 age);
void showPerson();
public:
T1 m_Name;
T2 m_Age;
};

//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age) {
this->m_Name = name;
this->m_Age = age;
}

//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson() {
cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

类模板分文件编写.cpp中代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include<iostream>
using namespace std;

//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件

//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"
void test01()
{
Person<string, int> p("Tom", 10);
p.showPerson();
}

int main() {

test01();

system("pause");

return 0;
}

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp

类模板与友元
学习目标:

掌握类模板配合友元函数的类内和类外实现
全局函数类内实现 - 直接在类内声明友元即可

全局函数类外实现 - 需要提前让编译器知道全局函数的存在

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#include <string>

//2、全局函数配合友元 类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template<class T1, class T2> class Person;

//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template<class T1, class T2> void printPerson2(Person<T1, T2> & p);

template<class T1, class T2>
void printPerson2(Person<T1, T2> & p)
{
cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}

template<class T1, class T2>
class Person
{
//1、全局函数配合友元 类内实现
friend void printPerson(Person<T1, T2> & p)
{
cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}


//全局函数配合友元 类外实现
friend void printPerson2<>(Person<T1, T2> & p);

public:

Person(T1 name, T2 age)
{
this->m_Name = name;
this->m_Age = age;
}


private:
T1 m_Name;
T2 m_Age;

};

//1、全局函数在类内实现
void test01()
{
Person <string, int >p("Tom", 20);
printPerson(p);
}


//2、全局函数在类外实现
void test02()
{
Person <string, int >p("Jerry", 30);
printPerson2(p);
}

int main() {

//test01();

test02();

system("pause");

return 0;
}

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别

类模板案例
案例描述: 实现一个通用的数组类,要求如下:

可以对内置数据类型以及自定义数据类型的数据进行存储
将数组中的数据存储到堆区
构造函数中可以传入数组的容量
提供对应的拷贝构造函数以及operator=防止浅拷贝问题
提供尾插法和尾删法对数组中的数据进行增加和删除
可以通过下标的方式访问数组中的元素
可以获取数组中当前元素个数和数组的容量

myArray.hpp中代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#pragma once
#include <iostream>
using namespace std;

template<class T>
class MyArray
{
public:

//构造函数
MyArray(int capacity)
{
this->m_Capacity = capacity;
this->m_Size = 0;
pAddress = new T[this->m_Capacity];
}

//拷贝构造
MyArray(const MyArray & arr)
{
this->m_Capacity = arr.m_Capacity;
this->m_Size = arr.m_Size;
this->pAddress = new T[this->m_Capacity];
for (int i = 0; i < this->m_Size; i++)
{
//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,
// 普通类型可以直接= 但是指针类型需要深拷贝
this->pAddress[i] = arr.pAddress[i];
}
}

//重载= 操作符 防止浅拷贝问题
MyArray& operator=(const MyArray& myarray) {

if (this->pAddress != NULL) {
delete[] this->pAddress;
this->m_Capacity = 0;
this->m_Size = 0;
}

this->m_Capacity = myarray.m_Capacity;
this->m_Size = myarray.m_Size;
this->pAddress = new T[this->m_Capacity];
for (int i = 0; i < this->m_Size; i++) {
this->pAddress[i] = myarray[i];
}
return *this;
}

//重载[] 操作符 arr[0]
T& operator [](int index)
{
return this->pAddress[index]; //不考虑越界,用户自己去处理
}

//尾插法
void Push_back(const T & val)
{
if (this->m_Capacity == this->m_Size)
{
return;
}
this->pAddress[this->m_Size] = val;
this->m_Size++;
}

//尾删法
void Pop_back()
{
if (this->m_Size == 0)
{
return;
}
this->m_Size--;
}

//获取数组容量
int getCapacity()
{
return this->m_Capacity;
}

//获取数组大小
int getSize()
{
return this->m_Size;
}


//析构
~MyArray()
{
if (this->pAddress != NULL)
{
delete[] this->pAddress;
this->pAddress = NULL;
this->m_Capacity = 0;
this->m_Size = 0;
}
}

private:
T * pAddress; //指向一个堆空间,这个空间存储真正的数据
int m_Capacity; //容量
int m_Size; // 大小
};

类模板案例—数组类封装.cpp中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include "myArray.hpp"
#include <string>

void printIntArray(MyArray<int>& arr) {
for (int i = 0; i < arr.getSize(); i++) {
cout << arr[i] << " ";
}
cout << endl;
}

//测试内置数据类型
void test01()
{
MyArray<int> array1(10);
for (int i = 0; i < 10; i++)
{
array1.Push_back(i);
}
cout << "array1打印输出:" << endl;
printIntArray(array1);
cout << "array1的大小:" << array1.getSize() << endl;
cout << "array1的容量:" << array1.getCapacity() << endl;

cout << "--------------------------" << endl;

MyArray<int> array2(array1);
array2.Pop_back();
cout << "array2打印输出:" << endl;
printIntArray(array2);
cout << "array2的大小:" << array2.getSize() << endl;
cout << "array2的容量:" << array2.getCapacity() << endl;
}

//测试自定义数据类型
class Person {
public:
Person() {}
Person(string name, int age) {
this->m_Name = name;
this->m_Age = age;
}
public:
string m_Name;
int m_Age;
};

void printPersonArray(MyArray<Person>& personArr)
{
for (int i = 0; i < personArr.getSize(); i++) {
cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;
}

}

void test02()
{
//创建数组
MyArray<Person> pArray(10);
Person p1("孙悟空", 30);
Person p2("韩信", 20);
Person p3("妲己", 18);
Person p4("王昭君", 15);
Person p5("赵云", 24);

//插入数据
pArray.Push_back(p1);
pArray.Push_back(p2);
pArray.Push_back(p3);
pArray.Push_back(p4);
pArray.Push_back(p5);

printPersonArray(pArray);

cout << "pArray的大小:" << pArray.getSize() << endl;
cout << "pArray的容量:" << pArray.getCapacity() << endl;

}

int main() {

//test01();

test02();

system("pause");

return 0;
}

总结:能够利用所学知识点实现通用的数组

STL(Standard Template Library, 标准模板库)

C++的面向对象和泛型编程思想,目的就是复用性的提升
为了建立数据结构和算法的一套标准,诞生了STL

STL基本概念
STL 从广义上分为: 容器(container) 算法(algorithm) 迭代器(iterator)
容器和算法之间通过迭代器进行无缝连接。
STL 几乎所有的代码都采用了模板类或者模板函数

STL六大组件
STL大体分为六大组件,分别是:容器、算法、迭代器、仿函数、适配器(配接器)、空间配置器

容器:各种数据结构,如vector、list、deque、set、map等,用来存放数据。
算法:各种常用的算法,如sort、find、copy、for_each等
迭代器:扮演了容器与算法之间的胶合剂。
仿函数:行为类似函数,可作为算法的某种策略。
适配器:一种用来修饰容器或者仿函数或迭代器接口的东西。
空间配置器:负责空间的配置与管理。

STL中容器、算法、迭代器
容器:

STL容器就是将运用最广泛的一些数据结构实现出来

常用的数据结构:数组, 链表,树, 栈, 队列, 集合, 映射表等

这些容器分为序列式容器和关联式容器两种:

​序列式容器:强调值的排序,序列式容器中的每个元素均有固定的位置。
关联式容器:二叉树结构,各元素之间没有严格的物理上的顺序关系

算法:

有限的步骤,解决逻辑或数学上的问题,这一门学科我们叫做算法

算法分为:质变算法和非质变算法

质变算法:是指运算过程中会更改区间内的元素的内容。例如拷贝,替换,删除等

非质变算法:是指运算过程中不会更改区间内的元素内容,例如查找、计数、遍历、寻找极值等

迭代器:容器和算法之间粘合剂

提供一种方法,使之能够依序寻访某个容器所含的各个元素,而又无需暴露该容器的内部表示方式。

每个容器都有自己专属的迭代器

迭代器使用非常类似于指针,初学阶段我们可以先理解迭代器为指针

迭代器种类:
|种类 |功能 |支持运算 |
|————–|——————————————————–|—————————————|
|输入迭代器 |对数据的只读访问 |只读,支持++、==、!= |
|输出迭代器 |对数据的只写访问 |只写,支持++ |
|前向迭代器 |读写操作,并能向前推进迭代器 |读写,支持++、==、!= |
|双向迭代器 |读写操作,并能向前和向后操作 |读写,支持++、–, |
|随机访问迭代器|读写操作,可以以跳跃的方式访问任意数据,功能最强的迭代器|读写,支持++、–、[n]、-n、<、<=、>、>=|

常用的容器中迭代器种类为双向迭代器,和随机访问迭代器

容器算法迭代器初识
了解STL中容器、算法、迭代器概念之后,我们利用代码感受STL的魅力

STL中最常用的容器为Vector,可以理解为数组,下面我们将学习如何向这个容器中插入数据、并遍历这个容器

vector存放内置数据类型
容器:vector

算法:for_each

迭代器:vector<int>::iterator

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <vector>
#include <algorithm>

void MyPrint(int val)
{
cout << val << endl;
}

void test01() {

//创建vector容器对象,并且通过模板参数指定容器中存放的数据的类型
vector<int> v;
//向容器中放数据
v.push_back(10);
v.push_back(20);
v.push_back(30);
v.push_back(40);

//每一个容器都有自己的迭代器,迭代器是用来遍历容器中的元素
//v.begin()返回迭代器,这个迭代器指向容器中第一个数据
//v.end()返回迭代器,这个迭代器指向容器元素的最后一个元素的下一个位置
//vector<int>::iterator 拿到vector<int>这种容器的迭代器类型

vector<int>::iterator pBegin = v.begin();
vector<int>::iterator pEnd = v.end();

//第一种遍历方式:
while (pBegin != pEnd) {
cout << *pBegin << endl;
pBegin++;
}


//第二种遍历方式:
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << endl;
}
cout << endl;

//第三种遍历方式:
//使用STL提供标准遍历算法 头文件 algorithm
for_each(v.begin(), v.end(), MyPrint);
}

int main() {

test01();

system("pause");

return 0;
}

Vector存放自定义数据类型
学习目标:vector中存放自定义数据类型,并打印输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <vector>
#include <string>

//自定义数据类型
class Person {
public:
Person(string name, int age) {
mName = name;
mAge = age;
}
public:
string mName;
int mAge;
};
//存放对象
void test01() {

vector<Person> v;

//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
Person p5("eee", 50);

v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
v.push_back(p5);

for (vector<Person>::iterator it = v.begin(); it != v.end(); it++) {
cout << "Name:" << (*it).mName << " Age:" << (*it).mAge << endl;

}
}


//放对象指针
void test02() {

vector<Person*> v;

//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
Person p5("eee", 50);

v.push_back(&p1);
v.push_back(&p2);
v.push_back(&p3);
v.push_back(&p4);
v.push_back(&p5);

for (vector<Person*>::iterator it = v.begin(); it != v.end(); it++) {
Person * p = (*it);
cout << "Name:" << p->mName << " Age:" << (*it)->mAge << endl;
}
}


int main() {

test01();

test02();

system("pause");

return 0;
}

Vector容器嵌套容器
学习目标:容器中嵌套容器,我们将所有数据进行遍历输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <vector>

//容器嵌套容器
void test01() {

vector< vector<int> > v;

vector<int> v1;
vector<int> v2;
vector<int> v3;
vector<int> v4;

for (int i = 0; i < 4; i++) {
v1.push_back(i + 1);
v2.push_back(i + 2);
v3.push_back(i + 3);
v4.push_back(i + 4);
}

//将容器元素插入到vector v中
v.push_back(v1);
v.push_back(v2);
v.push_back(v3);
v.push_back(v4);


for (vector<vector<int>>::iterator it = v.begin(); it != v.end(); it++) {

for (vector<int>::iterator vit = (*it).begin(); vit != (*it).end(); vit++) {
cout << *vit << " ";
}
cout << endl;
}

}

int main() {

test01();

system("pause");

return 0;
}

STL- 常用容器
string容器
string基本概念
本质:
string是C++风格的字符串,而string本质上是一个类

string 和 char * 区别:
char * 是一个指针
string 是一个类,类内部封装了 char*,管理这个字符串,是一个 char* 型的容器。

特点:

string 类内部封装了很多成员方法

例如:查找find,拷贝copy,删除delete 替换replace,插入insert

string 管理 char* 所分配的内存,不用担心复制越界和取值越界等,由类内部进行负责

string构造函数
构造函数原型:

1
2
3
string(); //创建一个空的字符串 例如: string str; string(const char* s); //使用字符串s初始化
string(const string& str); //使用一个 string 对象初始化另一个 string 对象
string(int n, char c); //使用 n 个字符 c 初始化

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <string>
//string构造
void test01()
{
string s1; //创建空字符串,调用无参构造函数
cout << "str1 = " << s1 << endl;

const char* str = "hello world";
string s2(str); //把c_string转换成了string

cout << "str2 = " << s2 << endl;

string s3(s2); //调用拷贝构造函数
cout << "str3 = " << s3 << endl;

string s4(10, 'a');
cout << "str3 = " << s3 << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:string的多种构造方式没有可比性,灵活使用即可

string赋值操作
功能描述:

给string字符串进行赋值
赋值的函数原型:

1
2
3
4
5
6
7
string& operator=(const char* s); //char*类型字符串 赋值给当前的字符串
string& operator=(const string &s); //把字符串s赋给当前的字符串
string& operator=(char c); //字符赋值给当前的字符串
string& assign(const char *s); //把字符串s赋给当前的字符串
string& assign(const char *s, int n); //把字符串s的前n个字符赋给当前的字符串
string& assign(const string &s); //把字符串s赋给当前字符串
string& assign(int n, char c); //用n个字符c赋给当前字符串
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
//赋值
void test01()
{
string str1;
str1 = "hello world";
cout << "str1 = " << str1 << endl;

string str2;
str2 = str1;
cout << "str2 = " << str2 << endl;

string str3;
str3 = 'a';
cout << "str3 = " << str3 << endl;

string str4;
str4.assign("hello c++");
cout << "str4 = " << str4 << endl;

string str5;
str5.assign("hello c++",5);
cout << "str5 = " << str5 << endl;


string str6;
str6.assign(str5);
cout << "str6 = " << str6 << endl;

string str7;
str7.assign(5, 'x');
cout << "str7 = " << str7 << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:string的赋值方式很多,operator= 这种方式是比较实用的

string字符串拼接
功能描述:

实现在字符串末尾拼接字符串
函数原型:

1
2
3
4
5
6
7
string& operator+=(const char* str); //重载+=操作符
string& operator+=(const char c); //重载+=操作符
string& operator+=(const string& str); //重载+=操作符
string& append(const char *s); //把字符串s连接到当前字符串结尾
string& append(const char *s, int n); //把字符串s的前n个字符连接到当前字符串结尾
string& append(const string &s); //同operator+=(const string& str)
string& append(const string &s, int pos, int n);//字符串s中从pos开始的n个字符连接到字符串结尾
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
//字符串拼接
void test01()
{
string str1 = "我";

str1 += "爱玩游戏";

cout << "str1 = " << str1 << endl;

str1 += ':';

cout << "str1 = " << str1 << endl;

string str2 = "LOL DNF";

str1 += str2;

cout << "str1 = " << str1 << endl;

string str3 = "I";
str3.append(" love ");
str3.append("game abcde", 4);
//str3.append(str2);
str3.append(str2, 4, 3); // 从下标4位置开始 ,截取3个字符,拼接到字符串末尾
cout << "str3 = " << str3 << endl;
}
int main() {

test01();

system("pause");

return 0;
}

总结:字符串拼接的重载版本很多,初学阶段记住几种即可

string查找和替换
功能描述:

查找:查找指定字符串是否存在
替换:在指定的位置替换字符串
函数原型:

1
2
3
4
5
6
7
8
9
10
int find(const string& str, int pos = 0) const; //查找str第一次出现位置,从pos开始查找
int find(const char* s, int pos = 0) const; //查找s第一次出现位置,从pos开始查找
int find(const char* s, int pos, int n) const; //从pos位置查找s的前n个字符第一次位置
int find(const char c, int pos = 0) const; //查找字符c第一次出现位置
int rfind(const string& str, int pos = npos) const; //查找str最后一次位置,从pos开始查找
int rfind(const char* s, int pos = npos) const; //查找s最后一次出现位置,从pos开始查找
int rfind(const char* s, int pos, int n) const; //从pos查找s的前n个字符最后一次位置
int rfind(const char c, int pos = 0) const; //查找字符c最后一次出现位置
string& replace(int pos, int n, const string& str); //替换从pos开始n个字符为字符串str
string& replace(int pos, int n,const char* s); //替换从pos开始的n个字符为字符串s
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
//查找和替换
void test01()
{
//查找
string str1 = "abcdefgde";

int pos = str1.find("de");

if (pos == -1)
{
cout << "未找到" << endl;
}
else
{
cout << "pos = " << pos << endl;
}


pos = str1.rfind("de");

cout << "pos = " << pos << endl;

}

void test02()
{
//替换
string str1 = "abcdefgde";
str1.replace(1, 3, "1111");

cout << "str1 = " << str1 << endl;
}

int main() {

//test01();
//test02();

system("pause");

return 0;
}

总结:
find查找是从左往后,rfind从右往左
find找到字符串后返回查找的第一个字符位置,找不到返回-1
replace在替换时,要指定从哪个位置起,多少个字符,替换成什么样的字符串

string字符串比较
功能描述:

字符串之间的比较
比较方式:

字符串比较是按字符的ASCII码进行对比
= 返回 0

返回 1

< 返回 -1

函数原型:

1
2
int compare(const string &s) const; //与字符串s比较
int compare(const char *s) const; //与字符串s比较
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//字符串比较
void test01()
{

string s1 = "hello";
string s2 = "aello";

int ret = s1.compare(s2);

if (ret == 0) {
cout << "s1 等于 s2" << endl;
}
else if (ret > 0)
{
cout << "s1 大于 s2" << endl;
}
else
{
cout << "s1 小于 s2" << endl;
}

}

int main() {

test01();

system("pause");

return 0;
}

总结:字符串对比主要是用于比较两个字符串是否相等,判断谁大谁小的意义并不是很大

string字符存取
string中单个字符存取方式有两种

1
2
char& operator[](int n); //通过[]方式取字符
char& at(int n); //通过at方法获取字符
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
void test01()
{
string str = "hello world";

for (int i = 0; i < str.size(); i++)
{
cout << str[i] << " ";
}
cout << endl;

for (int i = 0; i < str.size(); i++)
{
cout << str.at(i) << " ";
}
cout << endl;


//字符修改
str[0] = 'x';
str.at(1) = 'x';
cout << str << endl;

}

int main() {

test01();

system("pause");

return 0;
}

总结:string字符串中单个字符存取有两种方式,利用 [ ] 或 at

string插入和删除
功能描述:

对string字符串进行插入和删除字符操作
函数原型:

1
2
3
4
string& insert(int pos, const char* s); //插入字符串
string& insert(int pos, const string& str); //插入字符串
string& insert(int pos, int n, char c); //在指定位置插入n个字符c
string& erase(int pos, int n = npos); //删除从Pos开始的n个字符
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//字符串插入和删除
void test01()
{
string str = "hello";
str.insert(1, "111");
cout << str << endl;

str.erase(1, 3); //从1号位置开始3个字符
cout << str << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:插入和删除的起始下标都是从0开始

string子串
功能描述:

从字符串中获取想要的子串
函数原型:

1
string substr(int pos = 0, int n = npos) const; //返回由pos开始的n个字符组成的字符串
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//子串
void test01()
{

string str = "abcdefg";
string subStr = str.substr(1, 3);
cout << "subStr = " << subStr << endl;

string email = "hello@sina.com";
int pos = email.find("@");
string username = email.substr(0, pos);
cout << "username: " << username << endl;

}

int main() {

test01();

system("pause");

return 0;
}

总结:灵活的运用求子串功能,可以在实际开发中获取有效的信息

vector容器
vector基本概念
功能:

vector数据结构和数组非常相似,也称为单端数组
vector与普通数组区别:

不同之处在于数组是静态空间,而vector可以动态扩展
动态扩展:

并不是在原空间之后续接新空间,而是找更大的内存空间,然后将原数据拷贝新空间,释放原空间

vector容器的迭代器是支持随机访问的迭代器

vector构造函数
功能描述:

创建vector容器
函数原型:

1
2
3
4
vector<T> v; //采用模板实现类实现,默认构造函数
vector(v.begin(), v.end()); //将v[begin(), end())区间中的元素拷贝给本身。
vector(n, elem); //构造函数将n个elem拷贝给本身。
vector(const vector &vec); //拷贝构造函数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <vector>

void printVector(vector<int>& v) {

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

void test01()
{
vector<int> v1; //无参构造
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);

vector<int> v2(v1.begin(), v1.end());
printVector(v2);

vector<int> v3(10, 100);
printVector(v3);

vector<int> v4(v3);
printVector(v4);
}

int main() {

test01();

system("pause");

return 0;
}

总结:vector的多种构造方式没有可比性,灵活使用即可

vector赋值操作
功能描述:

给vector容器进行赋值
函数原型:

1
2
3
4
5
vector& operator=(const vector &vec);//重载等号操作符

assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。

assign(n, elem); //将n个elem拷贝赋值给本身。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <vector>

void printVector(vector<int>& v) {

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

//赋值操作
void test01()
{
vector<int> v1; //无参构造
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);

vector<int>v2;
v2 = v1;
printVector(v2);

vector<int>v3;
v3.assign(v1.begin(), v1.end());
printVector(v3);

vector<int>v4;
v4.assign(10, 100);
printVector(v4);
}

int main() {

test01();

system("pause");

return 0;
}

总结: vector赋值方式比较简单,使用operator=,或者assign都可以

vector容量和大小
功能描述:

对vector容器的容量和大小操作
函数原型:

1
2
3
4
5
6
7
8
9
10
11
12
13
empty(); //判断容器是否为空

capacity(); //容器的容量

size(); //返回容器中元素的个数

resize(int num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

//如果容器变短,则末尾超出容器长度的元素被删除。

resize(int num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

//如果容器变短,则末尾超出容器长度的元素被删除
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <vector>

void printVector(vector<int>& v) {

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

void test01()
{
vector<int> v1;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);
if (v1.empty())
{
cout << "v1为空" << endl;
}
else
{
cout << "v1不为空" << endl;
cout << "v1的容量 = " << v1.capacity() << endl;
cout << "v1的大小 = " << v1.size() << endl;
}

//resize 重新指定大小 ,若指定的更大,默认用0填充新位置,可以利用重载版本替换默认填充
v1.resize(15,10);
printVector(v1);

//resize 重新指定大小 ,若指定的更小,超出部分元素被删除
v1.resize(5);
printVector(v1);
}

int main() {

test01();

system("pause");

return 0;
}

总结:
判断是否为空 — empty
返回元素个数 — size
返回容器容量 — capacity
重新指定大小 — resize

vector插入和删除
功能描述:

对vector容器进行插入、删除操作
函数原型:

1
2
3
4
5
6
7
push_back(ele); //尾部插入元素ele
pop_back(); //删除最后一个元素
insert(const_iterator pos, ele); //迭代器指向位置pos插入元素ele
insert(const_iterator pos, int count,ele);//迭代器指向位置pos插入count个元素ele
erase(const_iterator pos); //删除迭代器指向的元素
erase(const_iterator start, const_iterator end);//删除迭代器从start到end之间的元素
clear(); //删除容器中所有元素
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

#include <vector>

void printVector(vector<int>& v) {

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

//插入和删除
void test01()
{
vector<int> v1;
//尾插
v1.push_back(10);
v1.push_back(20);
v1.push_back(30);
v1.push_back(40);
v1.push_back(50);
printVector(v1);
//尾删
v1.pop_back();
printVector(v1);
//插入
v1.insert(v1.begin(), 100);
printVector(v1);

v1.insert(v1.begin(), 2, 1000);
printVector(v1);

//删除
v1.erase(v1.begin());
printVector(v1);

//清空
v1.erase(v1.begin(), v1.end());
v1.clear();
printVector(v1);
}

int main() {

test01();

system("pause");

return 0;
}

总结:
尾插 — push_back
尾删 — pop_back
插入 — insert (位置迭代器)
删除 — erase (位置迭代器)
清空 — clear

vector数据存取
功能描述:

对vector中的数据的存取操作
函数原型:

1
2
3
4
at(int idx); //返回索引idx所指的数据
operator[]; //返回索引idx所指的数据
front(); //返回容器中第一个数据元素
back(); //返回容器中最后一个数据元素
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <vector>

void test01()
{
vector<int>v1;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}

for (int i = 0; i < v1.size(); i++)
{
cout << v1[i] << " ";
}
cout << endl;

for (int i = 0; i < v1.size(); i++)
{
cout << v1.at(i) << " ";
}
cout << endl;

cout << "v1的第一个元素为: " << v1.front() << endl;
cout << "v1的最后一个元素为: " << v1.back() << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:
除了用迭代器获取vector容器中元素,[ ]和at也可以
front返回容器第一个元素
back返回容器最后一个元素

vector互换容器
功能描述:

实现两个容器内元素进行互换
函数原型:

1
swap(vec); // 将vec与本身的元素互换
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <vector>

void printVector(vector<int>& v) {

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

void test01()
{
vector<int>v1;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);

vector<int>v2;
for (int i = 10; i > 0; i--)
{
v2.push_back(i);
}
printVector(v2);

//互换容器
cout << "互换后" << endl;
v1.swap(v2);
printVector(v1);
printVector(v2);
}

void test02()
{
vector<int> v;
for (int i = 0; i < 100000; i++) {
v.push_back(i);
}

cout << "v的容量为:" << v.capacity() << endl;
cout << "v的大小为:" << v.size() << endl;

v.resize(3);

cout << "v的容量为:" << v.capacity() << endl;
cout << "v的大小为:" << v.size() << endl;

//收缩内存
vector<int>(v).swap(v); //匿名对象

cout << "v的容量为:" << v.capacity() << endl;
cout << "v的大小为:" << v.size() << endl;
}

int main() {

test01();

test02();

system("pause");

return 0;
}

总结:swap可以使两个容器互换,可以达到实用的收缩内存效果

vector 预留空间
功能描述:

减少vector在动态扩展容量时的扩展次数
函数原型:

1
reserve(int len);//容器预留len个元素长度,预留位置不初始化,元素不可访问。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <vector>

void test01()
{
vector<int> v;

//预留空间
v.reserve(100000);

int num = 0;
int* p = NULL;
for (int i = 0; i < 100000; i++) {
v.push_back(i);
if (p != &v[0]) {
p = &v[0];
num++;
}
}

cout << "num:" << num << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:如果数据量较大,可以一开始利用reserve预留空间

deque容器
deque容器基本概念
功能:

双端数组,可以对头端进行插入删除操作
deque与vector区别:

vector对于头部的插入删除效率低,数据量越大,效率越低
deque相对而言,对头部的插入删除速度回比vector快
vector访问元素时的速度会比deque快,这和两者内部实现有关

clip_2.jpg

deque内部工作原理:

deque内部有个中控器,维护每段缓冲区中的内容,缓冲区中存放真实数据

中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间

clip_3.jpg

deque容器的迭代器也是支持随机访问的
deque构造函数
功能描述:

deque容器构造
函数原型:

1
2
3
4
deque<T> deqT; //默认构造形式
deque(beg, end); //构造函数将 [beg, end) 区间中的元素拷贝给本身。
deque(n, elem); //构造函数将n个elem拷贝给本身。
deque(const deque &deq); //拷贝构造函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <deque>

void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";

}
cout << endl;
}
//deque构造
void test01() {

deque<int> d1; //无参构造函数
for (int i = 0; i < 10; i++)
{
d1.push_back(i);
}
printDeque(d1);
deque<int> d2(d1.begin(),d1.end());
printDeque(d2);

deque<int>d3(10,100);
printDeque(d3);

deque<int>d4 = d3;
printDeque(d4);
}

int main() {

test01();

system("pause");

return 0;
}

总结:deque容器和vector容器的构造方式几乎一致,灵活使用即可

deque赋值操作
功能描述:

给deque容器进行赋值
函数原型:

1
2
3
4
5
deque& operator=(const deque &deq); //重载等号操作符

assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。

assign(n, elem); //将n个elem拷贝赋值给本身。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <deque>

void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";

}
cout << endl;
}
//赋值操作
void test01()
{
deque<int> d1;
for (int i = 0; i < 10; i++)
{
d1.push_back(i);
}
printDeque(d1);

deque<int>d2;
d2 = d1;
printDeque(d2);

deque<int>d3;
d3.assign(d1.begin(), d1.end());
printDeque(d3);

deque<int>d4;
d4.assign(10, 100);
printDeque(d4);

}

int main() {

test01();

system("pause");

return 0;
}

总结:deque赋值操作也与vector相同,需熟练掌握

deque大小操作
功能描述:

对deque容器的大小进行操作
函数原型:

1
2
3
4
5
6
7
8
9
10
11
deque.empty(); //判断容器是否为空

deque.size(); //返回容器中元素的个数

deque.resize(num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

//如果容器变短,则末尾超出容器长度的元素被删除。

deque.resize(num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

//如果容器变短,则末尾超出容器长度的元素被删除
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <deque>

void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";

}
cout << endl;
}

//大小操作
void test01()
{
deque<int> d1;
for (int i = 0; i < 10; i++)
{
d1.push_back(i);
}
printDeque(d1);

//判断容器是否为空
if (d1.empty()) {
cout << "d1为空!" << endl;
}
else {
cout << "d1不为空!" << endl;
//统计大小
cout << "d1的大小为:" << d1.size() << endl;
}

//重新指定大小
d1.resize(15, 1);
printDeque(d1);

d1.resize(5);
printDeque(d1);
}

int main() {

test01();

system("pause");

return 0;
}

总结:
deque没有容量的概念
判断是否为空 — empty
返回元素个数 — size
重新指定个数 — resize

deque 插入和删除
功能描述:

向deque容器中插入和删除数据
函数原型:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
两端插入操作:

push_back(elem); //在容器尾部添加一个数据
push_front(elem); //在容器头部插入一个数据
pop_back(); //删除容器最后一个数据
pop_front(); //删除容器第一个数据

指定位置操作:

insert(pos,elem); //在pos位置插入一个elem元素的拷贝,返回新数据的位置。

insert(pos,n,elem); //在pos位置插入n个elem数据,无返回值。

insert(pos,beg,end); //在pos位置插入[beg,end)区间的数据,无返回值。

clear(); //清空容器的所有数据

erase(beg,end); //删除[beg,end)区间的数据,返回下一个数据的位置。

erase(pos); //删除pos位置的数据,返回下一个数据的位置。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <deque>

void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";

}
cout << endl;
}
//两端操作
void test01()
{
deque<int> d;
//尾插
d.push_back(10);
d.push_back(20);
//头插
d.push_front(100);
d.push_front(200);

printDeque(d);

//尾删
d.pop_back();
//头删
d.pop_front();
printDeque(d);
}

//插入
void test02()
{
deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);
printDeque(d);

d.insert(d.begin(), 1000);
printDeque(d);

d.insert(d.begin(), 2,10000);
printDeque(d);

deque<int>d2;
d2.push_back(1);
d2.push_back(2);
d2.push_back(3);

d.insert(d.begin(), d2.begin(), d2.end());
printDeque(d);

}

//删除
void test03()
{
deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);
printDeque(d);

d.erase(d.begin());
printDeque(d);

d.erase(d.begin(), d.end());
d.clear();
printDeque(d);
}

int main() {

//test01();

//test02();

test03();

system("pause");

return 0;
}

总结:
插入和删除提供的位置是迭代器!
尾插 — push_back
尾删 — pop_back
头插 — push_front
头删 — pop_front

deque 数据存取
功能描述:

对deque 中的数据的存取操作
函数原型:

1
2
3
4
at(int idx); //返回索引idx所指的数据
operator[]; //返回索引idx所指的数据
front(); //返回容器中第一个数据元素
back(); //返回容器中最后一个数据元素
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <deque>

void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";

}
cout << endl;
}

//数据存取
void test01()
{

deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);

for (int i = 0; i < d.size(); i++) {
cout << d[i] << " ";
}
cout << endl;


for (int i = 0; i < d.size(); i++) {
cout << d.at(i) << " ";
}
cout << endl;

cout << "front:" << d.front() << endl;

cout << "back:" << d.back() << endl;

}

int main() {

test01();

system("pause");

return 0;
}

总结:
除了用迭代器获取deque容器中元素,[ ]和at也可以
front返回容器第一个元素
back返回容器最后一个元素

deque 排序
功能描述:

利用算法实现对deque容器进行排序
算法:

1
sort(iterator beg, iterator end) //对beg和end区间内元素进行排序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <deque>
#include <algorithm>

void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";

}
cout << endl;
}

void test01()
{

deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);

printDeque(d);
sort(d.begin(), d.end());
printDeque(d);

}

int main() {

test01();

system("pause");

return 0;
}

总结:sort算法非常实用,使用时包含头文件 algorithm 即可

案例-评委打分
案例描述
有5名选手:选手ABCDE,10个评委分别对每一名选手打分,去除最高分,去除评委中最低分,取平均分。

实现步骤
创建五名选手,放到vector中
遍历vector容器,取出来每一个选手,执行for循环,可以把10个评分打分存到deque容器中
sort算法对deque容器中分数排序,去除最高和最低分
deque容器遍历一遍,累加总分
获取平均分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
//选手类
class Person
{
public:
Person(string name, int score)
{
this->m_Name = name;
this->m_Score = score;
}

string m_Name; //姓名
int m_Score; //平均分
};

void createPerson(vector<Person>&v)
{
string nameSeed = "ABCDE";
for (int i = 0; i < 5; i++)
{
string name = "选手";
name += nameSeed[i];

int score = 0;

Person p(name, score);

//将创建的person对象 放入到容器中
v.push_back(p);
}
}

//打分
void setScore(vector<Person>&v)
{
for (vector<Person>::iterator it = v.begin(); it != v.end(); it++)
{
//将评委的分数 放入到deque容器中
deque<int>d;
for (int i = 0; i < 10; i++)
{
int score = rand() % 41 + 60; // 60 ~ 100
d.push_back(score);
}

//cout << "选手: " << it->m_Name << " 打分: " << endl;
//for (deque<int>::iterator dit = d.begin(); dit != d.end(); dit++)
//{
// cout << *dit << " ";
//}
//cout << endl;

//排序
sort(d.begin(), d.end());

//去除最高和最低分
d.pop_back();
d.pop_front();

//取平均分
int sum = 0;
for (deque<int>::iterator dit = d.begin(); dit != d.end(); dit++)
{
sum += *dit; //累加每个评委的分数
}

int avg = sum / d.size();

//将平均分 赋值给选手身上
it->m_Score = avg;
}

}

void showScore(vector<Person>&v)
{
for (vector<Person>::iterator it = v.begin(); it != v.end(); it++)
{
cout << "姓名: " << it->m_Name << " 平均分: " << it->m_Score << endl;
}
}

int main() {

//随机数种子
srand((unsigned int)time(NULL));

//1、创建5名选手
vector<Person>v; //存放选手容器
createPerson(v);

//测试
//for (vector<Person>::iterator it = v.begin(); it != v.end(); it++)
//{
// cout << "姓名: " << (*it).m_Name << " 分数: " << (*it).m_Score << endl;
//}

//2、给5名选手打分
setScore(v);

//3、显示最后得分
showScore(v);

system("pause");

return 0;
}

总结:选取不同的容器操作数据,可以提升代码的效率

stack容器
stack 基本概念
概念:stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口

clip_4.jpg

栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为

stack 常用接口
功能描述:栈容器常用的对外接口

构造函数:

stack stk; //stack采用模板类实现, stack对象的默认构造形式
stack(const stack &stk); //拷贝构造函数
赋值操作:

stack& operator=(const stack &stk); //重载等号操作符
数据存取:

push(elem); //向栈顶添加元素
pop(); //从栈顶移除第一个元素
top(); //返回栈顶元素
大小操作:

empty(); //判断堆栈是否为空
size(); //返回栈的大小

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <stack>

//栈容器常用接口
void test01()
{
//创建栈容器 栈容器必须符合先进后出
stack<int> s;

//向栈中添加元素,叫做 压栈 入栈
s.push(10);
s.push(20);
s.push(30);

while (!s.empty()) {
//输出栈顶元素
cout << "栈顶元素为: " << s.top() << endl;
//弹出栈顶元素
s.pop();
}
cout << "栈的大小为:" << s.size() << endl;

}

int main() {

test01();

system("pause");

return 0;
}

总结:
返回栈顶 — top
判断栈是否为空 — empty
返回栈大小 — size

queue 容器
queue 基本概念
概念:Queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口

clip_5.jpg

队列容器允许从一端新增元素,从另一端移除元素

队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为

队列中进数据称为 — 入队 push

队列中出数据称为 — 出队 pop

queue 常用接口
功能描述:栈容器常用的对外接口

构造函数:

queue que; //queue采用模板类实现,queue对象的默认构造形式
queue(const queue &que); //拷贝构造函数
赋值操作:

queue& operator=(const queue &que); //重载等号操作符
数据存取:

push(elem); //往队尾添加元素
pop(); //从队头移除第一个元素
back(); //返回最后一个元素
front(); //返回第一个元素
大小操作:

empty(); //判断堆栈是否为空
size(); //返回栈的大小

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <queue>
#include <string>
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}

string m_Name;
int m_Age;
};

void test01() {

//创建队列
queue<Person> q;

//准备数据
Person p1("唐僧", 30);
Person p2("孙悟空", 1000);
Person p3("猪八戒", 900);
Person p4("沙僧", 800);

//向队列中添加元素 入队操作
q.push(p1);
q.push(p2);
q.push(p3);
q.push(p4);

//队列不提供迭代器,更不支持随机访问
while (!q.empty()) {
//输出队头元素
cout << "队头元素-- 姓名: " << q.front().m_Name
<< " 年龄: "<< q.front().m_Age << endl;

cout << "队尾元素-- 姓名: " << q.back().m_Name
<< " 年龄: " << q.back().m_Age << endl;

cout << endl;
//弹出队头元素
q.pop();
}

cout << "队列大小为:" << q.size() << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:
入队 — push
出队 — pop
返回队头元素 — front
返回队尾元素 — back
判断队是否为空 — empty
返回队列大小 — size

list容器
list基本概念
功能:将数据进行链式存储

链表(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的

链表的组成:链表由一系列结点组成

结点的组成:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域

STL中的链表是一个双向循环链表

clip_6.jpg

由于链表的存储方式并不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于双向迭代器

list的优点:

采用动态存储分配,不会造成内存浪费和溢出
链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素
list的缺点:

链表灵活,但是空间(指针域) 和 时间(遍历)额外耗费较大
List有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效,这在vector是不成立的。

总结:STL中List和vector是两个最常被使用的容器,各有优缺点

list构造函数
功能描述:

创建list容器
函数原型:

1
2
3
4
list<T> lst; //list采用采用模板类实现,对象的默认构造形式:
list(beg,end); //构造函数将[beg, end)区间中的元素拷贝给本身。
list(n,elem); //构造函数将n个elem拷贝给本身。
list(const list &lst); //拷贝构造函数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <list>

void printList(const list<int>& L) {

for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);

printList(L1);

list<int>L2(L1.begin(),L1.end());
printList(L2);

list<int>L3(L2);
printList(L3);

list<int>L4(10, 1000);
printList(L4);
}

int main() {

test01();

system("pause");

return 0;
}

总结:list 构造方式同其他几个STL常用容器,熟练掌握即可

list 赋值和交换
功能描述:

给list容器进行赋值,以及交换list容器
函数原型:

1
2
3
4
assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem); //将n个elem拷贝赋值给本身。
list& operator=(const list &lst); //重载等号操作符
swap(lst); //将lst与本身的元素互换。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <list>

void printList(const list<int>& L) {

for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

//赋值和交换
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
printList(L1);

//赋值
list<int>L2;
L2 = L1;
printList(L2);

list<int>L3;
L3.assign(L2.begin(), L2.end());
printList(L3);

list<int>L4;
L4.assign(10, 100);
printList(L4);

}

//交换
void test02()
{

list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);

list<int>L2;
L2.assign(10, 100);

cout << "交换前: " << endl;
printList(L1);
printList(L2);

cout << endl;

L1.swap(L2);

cout << "交换后: " << endl;
printList(L1);
printList(L2);

}

int main() {

//test01();

test02();

system("pause");

return 0;
}

总结:list赋值和交换操作能够灵活运用即可

3.7.4 list 大小操作
功能描述:

对list容器的大小进行操作
函数原型:

size(); //返回容器中元素的个数

empty(); //判断容器是否为空

resize(num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

​ //如果容器变短,则末尾超出容器长度的元素被删除。

resize(num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

            ​                        //如果容器变短,则末尾超出容器长度的元素被删除。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <list>

void printList(const list<int>& L) {

for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

//大小操作
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);

if (L1.empty())
{
cout << "L1为空" << endl;
}
else
{
cout << "L1不为空" << endl;
cout << "L1的大小为: " << L1.size() << endl;
}

//重新指定大小
L1.resize(10);
printList(L1);

L1.resize(2);
printList(L1);
}

int main() {

test01();

system("pause");

return 0;
}

总结:

判断是否为空 — empty
返回元素个数 — size
重新指定个数 — resize
3.7.5 list 插入和删除
功能描述:

对list容器进行数据的插入和删除
函数原型:

push_back(elem);//在容器尾部加入一个元素
pop_back();//删除容器中最后一个元素
push_front(elem);//在容器开头插入一个元素
pop_front();//从容器开头移除第一个元素
insert(pos,elem);//在pos位置插elem元素的拷贝,返回新数据的位置。
insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。
insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。
clear();//移除容器的所有数据
erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。
erase(pos);//删除pos位置的数据,返回下一个数据的位置。
remove(elem);//删除容器中所有与elem值匹配的元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <list>

void printList(const list<int>& L) {

for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

//插入和删除
void test01()
{
list<int> L;
//尾插
L.push_back(10);
L.push_back(20);
L.push_back(30);
//头插
L.push_front(100);
L.push_front(200);
L.push_front(300);

printList(L);

//尾删
L.pop_back();
printList(L);

//头删
L.pop_front();
printList(L);

//插入
list<int>::iterator it = L.begin();
L.insert(++it, 1000);
printList(L);

//删除
it = L.begin();
L.erase(++it);
printList(L);

//移除
L.push_back(10000);
L.push_back(10000);
L.push_back(10000);
printList(L);
L.remove(10000);
printList(L);

//清空
L.clear();
printList(L);
}

int main() {

test01();

system("pause");

return 0;
}

总结:

尾插 — push_back
尾删 — pop_back
头插 — push_front
头删 — pop_front
插入 — insert
删除 — erase
移除 — remove
清空 — clear
3.7.6 list 数据存取
功能描述:

对list容器中数据进行存取
函数原型:

front(); //返回第一个元素。
back(); //返回最后一个元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <list>

//数据存取
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);


//cout << L1.at(0) << endl;//错误 不支持at访问数据
//cout << L1[0] << endl; //错误 不支持[]方式访问数据
cout << "第一个元素为: " << L1.front() << endl;
cout << "最后一个元素为: " << L1.back() << endl;

//list容器的迭代器是双向迭代器,不支持随机访问
list<int>::iterator it = L1.begin();
//it = it + 1;//错误,不可以跳跃访问,即使是+1
}

int main() {

test01();

system("pause");

return 0;
}

总结:

list容器中不可以通过[]或者at方式访问数据
返回第一个元素 — front
返回最后一个元素 — back
3.7.7 list 反转和排序
功能描述:

将容器中的元素反转,以及将容器中的数据进行排序
函数原型:

reverse(); //反转链表
sort(); //链表排序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
void printList(const list<int>& L) {

for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

bool myCompare(int val1 , int val2)
{
return val1 > val2;
}

//反转和排序
void test01()
{
list<int> L;
L.push_back(90);
L.push_back(30);
L.push_back(20);
L.push_back(70);
printList(L);

//反转容器的元素
L.reverse();
printList(L);

//排序
L.sort(); //默认的排序规则 从小到大
printList(L);

L.sort(myCompare); //指定规则,从大到小
printList(L);
}

int main() {

test01();

system("pause");

return 0;
}

总结:

反转 — reverse
排序 — sort (成员函数)
3.7.8 排序案例
案例描述:将Person自定义数据类型进行排序,Person中属性有姓名、年龄、身高

排序规则:按照年龄进行升序,如果年龄相同按照身高进行降序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <list>
#include <string>
class Person {
public:
Person(string name, int age , int height) {
m_Name = name;
m_Age = age;
m_Height = height;
}

public:
string m_Name; //姓名
int m_Age; //年龄
int m_Height; //身高
};


bool ComparePerson(Person& p1, Person& p2) {

if (p1.m_Age == p2.m_Age) {
return p1.m_Height > p2.m_Height;
}
else
{
return p1.m_Age < p2.m_Age;
}

}

void test01() {

list<Person> L;

Person p1("刘备", 35 , 175);
Person p2("曹操", 45 , 180);
Person p3("孙权", 40 , 170);
Person p4("赵云", 25 , 190);
Person p5("张飞", 35 , 160);
Person p6("关羽", 35 , 200);

L.push_back(p1);
L.push_back(p2);
L.push_back(p3);
L.push_back(p4);
L.push_back(p5);
L.push_back(p6);

for (list<Person>::iterator it = L.begin(); it != L.end(); it++) {
cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age
<< " 身高: " << it->m_Height << endl;
}

cout << "---------------------------------" << endl;
L.sort(ComparePerson); //排序

for (list<Person>::iterator it = L.begin(); it != L.end(); it++) {
cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age
<< " 身高: " << it->m_Height << endl;
}
}

int main() {

test01();

system("pause");

return 0;
}

总结:

对于自定义数据类型,必须要指定排序规则,否则编译器不知道如何进行排序

高级排序只是在排序规则上再进行一次逻辑规则制定,并不复杂

3.8 set/ multiset 容器
3.8.1 set基本概念
简介:

所有元素都会在插入时自动被排序
本质:

set/multiset属于关联式容器,底层结构是用二叉树实现。
set和multiset区别:

set不允许容器中有重复的元素
multiset允许容器中有重复的元素
3.8.2 set构造和赋值
功能描述:创建set容器以及赋值

构造:

set st; //默认构造函数:
set(const set &st); //拷贝构造函数
赋值:

set& operator=(const set &st); //重载等号操作符

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <set>

void printSet(set<int> & s)
{
for (set<int>::iterator it = s.begin(); it != s.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}

//构造和赋值
void test01()
{
set<int> s1;

s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);
printSet(s1);

//拷贝构造
set<int>s2(s1);
printSet(s2);

//赋值
set<int>s3;
s3 = s2;
printSet(s3);
}

int main() {

test01();

system("pause");

return 0;
}

总结:

set容器插入数据时用insert
set容器插入数据的数据会自动排序
3.8.3 set大小和交换
功能描述:

统计set容器大小以及交换set容器
函数原型:

size(); //返回容器中元素的数目
empty(); //判断容器是否为空
swap(st); //交换两个集合容器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <set>

void printSet(set<int> & s)
{
for (set<int>::iterator it = s.begin(); it != s.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}

//大小
void test01()
{

set<int> s1;

s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);

if (s1.empty())
{
cout << "s1为空" << endl;
}
else
{
cout << "s1不为空" << endl;
cout << "s1的大小为: " << s1.size() << endl;
}

}

//交换
void test02()
{
set<int> s1;

s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);

set<int> s2;

s2.insert(100);
s2.insert(300);
s2.insert(200);
s2.insert(400);

cout << "交换前" << endl;
printSet(s1);
printSet(s2);
cout << endl;

cout << "交换后" << endl;
s1.swap(s2);
printSet(s1);
printSet(s2);
}

int main() {

//test01();

test02();

system("pause");

return 0;
}

总结:

统计大小 — size
判断是否为空 — empty
交换容器 — swap
3.8.4 set插入和删除
功能描述:

set容器进行插入数据和删除数据
函数原型:

insert(elem); //在容器中插入元素。
clear(); //清除所有元素
erase(pos); //删除pos迭代器所指的元素,返回下一个元素的迭代器。
erase(beg, end); //删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
erase(elem); //删除容器中值为elem的元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <set>

void printSet(set<int> & s)
{
for (set<int>::iterator it = s.begin(); it != s.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}

//插入和删除
void test01()
{
set<int> s1;
//插入
s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);
printSet(s1);

//删除
s1.erase(s1.begin());
printSet(s1);

s1.erase(30);
printSet(s1);

//清空
//s1.erase(s1.begin(), s1.end());
s1.clear();
printSet(s1);
}

int main() {

test01();

system("pause");

return 0;
}

总结:

插入 — insert
删除 — erase
清空 — clear
3.8.5 set查找和统计
功能描述:

对set容器进行查找数据以及统计数据
函数原型:

find(key); //查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
count(key); //统计key的元素个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <set>

//查找和统计
void test01()
{
set<int> s1;
//插入
s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);

//查找
set<int>::iterator pos = s1.find(30);

if (pos != s1.end())
{
cout << "找到了元素 : " << *pos << endl;
}
else
{
cout << "未找到元素" << endl;
}

//统计
int num = s1.count(30);
cout << "num = " << num << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

查找 — find (返回的是迭代器)
统计 — count (对于set,结果为0或者1)
3.8.6 set和multiset区别
学习目标:

掌握set和multiset的区别
区别:

set不可以插入重复数据,而multiset可以
set插入数据的同时会返回插入结果,表示插入是否成功
multiset不会检测数据,因此可以插入重复数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <set>

//set和multiset区别
void test01()
{
set<int> s;
pair<set<int>::iterator, bool> ret = s.insert(10);
if (ret.second) {
cout << "第一次插入成功!" << endl;
}
else {
cout << "第一次插入失败!" << endl;
}

ret = s.insert(10);
if (ret.second) {
cout << "第二次插入成功!" << endl;
}
else {
cout << "第二次插入失败!" << endl;
}

//multiset
multiset<int> ms;
ms.insert(10);
ms.insert(10);

for (multiset<int>::iterator it = ms.begin(); it != ms.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

如果不允许插入重复数据可以利用set
如果需要插入重复数据利用multiset
3.8.7 pair对组创建
功能描述:

成对出现的数据,利用对组可以返回两个数据
两种创建方式:

pair<type, type> p ( value1, value2 );
pair<type, type> p = make_pair( value1, value2 );

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <string>

//对组创建
void test01()
{
pair<string, int> p(string("Tom"), 20);
cout << "姓名: " << p.first << " 年龄: " << p.second << endl;

pair<string, int> p2 = make_pair("Jerry", 10);
cout << "姓名: " << p2.first << " 年龄: " << p2.second << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

两种方式都可以创建对组,记住一种即可

3.8.8 set容器排序
学习目标:

set容器默认排序规则为从小到大,掌握如何改变排序规则
主要技术点:

利用仿函数,可以改变排序规则
示例一 set存放内置数据类型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <set>

class MyCompare
{
public:
bool operator()(int v1, int v2) {
return v1 > v2;
}
};
void test01()
{
set<int> s1;
s1.insert(10);
s1.insert(40);
s1.insert(20);
s1.insert(30);
s1.insert(50);

//默认从小到大
for (set<int>::iterator it = s1.begin(); it != s1.end(); it++) {
cout << *it << " ";
}
cout << endl;

//指定排序规则
set<int,MyCompare> s2;
s2.insert(10);
s2.insert(40);
s2.insert(20);
s2.insert(30);
s2.insert(50);

for (set<int, MyCompare>::iterator it = s2.begin(); it != s2.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:利用仿函数可以指定set容器的排序规则

示例二 set存放自定义数据类型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <set>
#include <string>

class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}

string m_Name;
int m_Age;

};
class comparePerson
{
public:
bool operator()(const Person& p1, const Person &p2)
{
//按照年龄进行排序 降序
return p1.m_Age > p2.m_Age;
}
};

void test01()
{
set<Person, comparePerson> s;

Person p1("刘备", 23);
Person p2("关羽", 27);
Person p3("张飞", 25);
Person p4("赵云", 21);

s.insert(p1);
s.insert(p2);
s.insert(p3);
s.insert(p4);

for (set<Person, comparePerson>::iterator it = s.begin(); it != s.end(); it++)
{
cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << endl;
}
}
int main() {

test01();

system("pause");

return 0;
}

总结:

对于自定义数据类型,set必须指定排序规则才可以插入数据

3.9 map/ multimap容器
3.9.1 map基本概念
简介:

map中所有元素都是pair
pair中第一个元素为key(键值),起到索引作用,第二个元素为value(实值)
所有元素都会根据元素的键值自动排序
本质:

map/multimap属于关联式容器,底层结构是用二叉树实现。
优点:

可以根据key值快速找到value值
map和multimap区别:

map不允许容器中有重复key值元素
multimap允许容器中有重复key值元素
3.9.2 map构造和赋值
功能描述:

对map容器进行构造和赋值操作
函数原型:

构造:

map<T1, T2> mp; //map默认构造函数:
map(const map &mp); //拷贝构造函数
赋值:

map& operator=(const map &mp); //重载等号操作符

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <map>

void printMap(map<int,int>&m)
{
for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
{
cout << "key = " << it->first << " value = " << it->second << endl;
}
cout << endl;
}

void test01()
{
map<int,int>m; //默认构造
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));
printMap(m);

map<int, int>m2(m); //拷贝构造
printMap(m2);

map<int, int>m3;
m3 = m2; //赋值
printMap(m3);
}

int main() {

test01();

system("pause");

return 0;
}

总结:map中所有元素都是成对出现,插入数据时候要使用对组

3.9.3 map大小和交换
功能描述:

统计map容器大小以及交换map容器
函数原型:

size(); //返回容器中元素的数目
empty(); //判断容器是否为空
swap(st); //交换两个集合容器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <map>

void printMap(map<int,int>&m)
{
for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
{
cout << "key = " << it->first << " value = " << it->second << endl;
}
cout << endl;
}

void test01()
{
map<int, int>m;
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));

if (m.empty())
{
cout << "m为空" << endl;
}
else
{
cout << "m不为空" << endl;
cout << "m的大小为: " << m.size() << endl;
}
}


//交换
void test02()
{
map<int, int>m;
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));

map<int, int>m2;
m2.insert(pair<int, int>(4, 100));
m2.insert(pair<int, int>(5, 200));
m2.insert(pair<int, int>(6, 300));

cout << "交换前" << endl;
printMap(m);
printMap(m2);

cout << "交换后" << endl;
m.swap(m2);
printMap(m);
printMap(m2);
}

int main() {

test01();

test02();

system("pause");

return 0;
}

总结:

统计大小 — size
判断是否为空 — empty
交换容器 — swap
3.9.4 map插入和删除
功能描述:

map容器进行插入数据和删除数据
函数原型:

insert(elem); //在容器中插入元素。
clear(); //清除所有元素
erase(pos); //删除pos迭代器所指的元素,返回下一个元素的迭代器。
erase(beg, end); //删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
erase(key); //删除容器中值为key的元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <map>

void printMap(map<int,int>&m)
{
for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
{
cout << "key = " << it->first << " value = " << it->second << endl;
}
cout << endl;
}

void test01()
{
//插入
map<int, int> m;
//第一种插入方式
m.insert(pair<int, int>(1, 10));
//第二种插入方式
m.insert(make_pair(2, 20));
//第三种插入方式
m.insert(map<int, int>::value_type(3, 30));
//第四种插入方式
m[4] = 40;
printMap(m);

//删除
m.erase(m.begin());
printMap(m);

m.erase(3);
printMap(m);

//清空
m.erase(m.begin(),m.end());
m.clear();
printMap(m);
}

int main() {

test01();

system("pause");

return 0;
}

总结:

map插入方式很多,记住其一即可
插入 — insert
删除 — erase
清空 — clear
3.9.5 map查找和统计
功能描述:

对map容器进行查找数据以及统计数据
函数原型:

find(key); //查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
count(key); //统计key的元素个数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <map>

//查找和统计
void test01()
{
map<int, int>m;
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));

//查找
map<int, int>::iterator pos = m.find(3);

if (pos != m.end())
{
cout << "找到了元素 key = " << (*pos).first << " value = " << (*pos).second << endl;
}
else
{
cout << "未找到元素" << endl;
}

//统计
int num = m.count(3);
cout << "num = " << num << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

查找 — find (返回的是迭代器)
统计 — count (对于map,结果为0或者1)
3.9.6 map容器排序
学习目标:

map容器默认排序规则为 按照key值进行 从小到大排序,掌握如何改变排序规则
主要技术点:

利用仿函数,可以改变排序规则

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <map>

class MyCompare {
public:
bool operator()(int v1, int v2) {
return v1 > v2;
}
};

void test01()
{
//默认从小到大排序
//利用仿函数实现从大到小排序
map<int, int, MyCompare> m;

m.insert(make_pair(1, 10));
m.insert(make_pair(2, 20));
m.insert(make_pair(3, 30));
m.insert(make_pair(4, 40));
m.insert(make_pair(5, 50));

for (map<int, int, MyCompare>::iterator it = m.begin(); it != m.end(); it++) {
cout << "key:" << it->first << " value:" << it->second << endl;
}
}
int main() {

test01();

system("pause");

return 0;
}

总结:

利用仿函数可以指定map容器的排序规则
对于自定义数据类型,map必须要指定排序规则,同set容器
3.10 案例-员工分组
3.10.1 案例描述
公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作
员工信息有: 姓名 工资组成;部门分为:策划、美术、研发
随机给10名员工分配部门和工资
通过multimap进行信息的插入 key(部门编号) value(员工)
分部门显示员工信息
3.10.2 实现步骤
创建10名员工,放到vector中
遍历vector容器,取出每个员工,进行随机分组
分组后,将员工部门编号作为key,具体员工作为value,放入到multimap容器中
分部门显示员工信息

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include<iostream>
using namespace std;
#include <vector>
#include <string>
#include <map>
#include <ctime>

/*
- 公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作
- 员工信息有: 姓名 工资组成;部门分为:策划、美术、研发
- 随机给10名员工分配部门和工资
- 通过multimap进行信息的插入 key(部门编号) value(员工)
- 分部门显示员工信息
*/

#define CEHUA 0
#define MEISHU 1
#define YANFA 2

class Worker
{
public:
string m_Name;
int m_Salary;
};

void createWorker(vector<Worker>&v)
{
string nameSeed = "ABCDEFGHIJ";
for (int i = 0; i < 10; i++)
{
Worker worker;
worker.m_Name = "员工";
worker.m_Name += nameSeed[i];

worker.m_Salary = rand() % 10000 + 10000; // 10000 ~ 19999
//将员工放入到容器中
v.push_back(worker);
}
}

//员工分组
void setGroup(vector<Worker>&v,multimap<int,Worker>&m)
{
for (vector<Worker>::iterator it = v.begin(); it != v.end(); it++)
{
//产生随机部门编号
int deptId = rand() % 3; // 0 1 2

//将员工插入到分组中
//key部门编号,value具体员工
m.insert(make_pair(deptId, *it));
}
}

void showWorkerByGourp(multimap<int,Worker>&m)
{
// 0 A B C 1 D E 2 F G ...
cout << "策划部门:" << endl;

multimap<int,Worker>::iterator pos = m.find(CEHUA);
int count = m.count(CEHUA); // 统计具体人数
int index = 0;
for (; pos != m.end() && index < count; pos++ , index++)
{
cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
}

cout << "----------------------" << endl;
cout << "美术部门: " << endl;
pos = m.find(MEISHU);
count = m.count(MEISHU); // 统计具体人数
index = 0;
for (; pos != m.end() && index < count; pos++, index++)
{
cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
}

cout << "----------------------" << endl;
cout << "研发部门: " << endl;
pos = m.find(YANFA);
count = m.count(YANFA); // 统计具体人数
index = 0;
for (; pos != m.end() && index < count; pos++, index++)
{
cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
}

}

int main() {

srand((unsigned int)time(NULL));

//1、创建员工
vector<Worker>vWorker;
createWorker(vWorker);

//2、员工分组
multimap<int, Worker>mWorker;
setGroup(vWorker, mWorker);


//3、分组显示员工
showWorkerByGourp(mWorker);

////测试
//for (vector<Worker>::iterator it = vWorker.begin(); it != vWorker.end(); it++)
//{
// cout << "姓名: " << it->m_Name << " 工资: " << it->m_Salary << endl;
//}

system("pause");

return 0;
}

总结:

当数据以键值对形式存在,可以考虑用map 或 multimap
4 STL- 函数对象
4.1 函数对象
4.1.1 函数对象概念
概念:

重载函数调用操作符的类,其对象常称为函数对象
函数对象使用重载的()时,行为类似函数调用,也叫仿函数
本质:

函数对象(仿函数)是一个类,不是一个函数

4.1.2 函数对象使用
特点:

函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
函数对象超出普通函数的概念,函数对象可以有自己的状态
函数对象可以作为参数传递

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <string>

//1、函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
class MyAdd
{
public :
int operator()(int v1,int v2)
{
return v1 + v2;
}
};

void test01()
{
MyAdd myAdd;
cout << myAdd(10, 10) << endl;
}

//2、函数对象可以有自己的状态
class MyPrint
{
public:
MyPrint()
{
count = 0;
}
void operator()(string test)
{
cout << test << endl;
count++; //统计使用次数
}

int count; //内部自己的状态
};
void test02()
{
MyPrint myPrint;
myPrint("hello world");
myPrint("hello world");
myPrint("hello world");
cout << "myPrint调用次数为: " << myPrint.count << endl;
}

//3、函数对象可以作为参数传递
void doPrint(MyPrint &mp , string test)
{
mp(test);
}

void test03()
{
MyPrint myPrint;
doPrint(myPrint, "Hello C++");
}

int main() {

//test01();
//test02();
test03();

system("pause");

return 0;
}

总结:

仿函数写法非常灵活,可以作为参数进行传递。
4.2 谓词
4.2.1 谓词概念
概念:

返回bool类型的仿函数称为谓词
如果operator()接受一个参数,那么叫做一元谓词
如果operator()接受两个参数,那么叫做二元谓词
4.2.2 一元谓词

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include <vector>
#include <algorithm>

//1.一元谓词
struct GreaterFive{
bool operator()(int val) {
return val > 5;
}
};

void test01() {

vector<int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}

vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());
if (it == v.end()) {
cout << "没找到!" << endl;
}
else {
cout << "找到:" << *it << endl;
}

}

int main() {

test01();

system("pause");

return 0;
}

总结:参数只有一个的谓词,称为一元谓词

4.2.3 二元谓词

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <vector>
#include <algorithm>
//二元谓词
class MyCompare
{
public:
bool operator()(int num1, int num2)
{
return num1 > num2;
}
};

void test01()
{
vector<int> v;
v.push_back(10);
v.push_back(40);
v.push_back(20);
v.push_back(30);
v.push_back(50);

//默认从小到大
sort(v.begin(), v.end());
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it << " ";
}
cout << endl;
cout << "----------------------------" << endl;

//使用函数对象改变算法策略,排序从大到小
sort(v.begin(), v.end(), MyCompare());
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:参数只有两个的谓词,称为二元谓词

4.3 内建函数对象
4.3.1 内建函数对象意义
概念:

STL内建了一些函数对象
分类:

算术仿函数

关系仿函数

逻辑仿函数

用法:

这些仿函数所产生的对象,用法和一般函数完全相同
使用内建函数对象,需要引入头文件 #include
4.3.2 算术仿函数
功能描述:

实现四则运算
其中negate是一元运算,其他都是二元运算
仿函数原型:

template T plus //加法仿函数
template T minus //减法仿函数
template T multiplies //乘法仿函数
template T divides //除法仿函数
template T modulus //取模仿函数
template T negate //取反仿函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <functional>
//negate
void test01()
{
negate<int> n;
cout << n(50) << endl;
}

//plus
void test02()
{
plus<int> p;
cout << p(10, 20) << endl;
}

int main() {

test01();
test02();

system("pause");

return 0;
}

总结:使用内建函数对象时,需要引入头文件 #include

4.3.3 关系仿函数
功能描述:

实现关系对比
仿函数原型:

template bool equal_to //等于
template bool not_equal_to //不等于
template bool greater //大于
template bool greater_equal //大于等于
template bool less //小于
template bool less_equal //小于等于

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <functional>
#include <vector>
#include <algorithm>

class MyCompare
{
public:
bool operator()(int v1,int v2)
{
return v1 > v2;
}
};
void test01()
{
vector<int> v;

v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(40);
v.push_back(20);

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;

//自己实现仿函数
//sort(v.begin(), v.end(), MyCompare());
//STL内建仿函数 大于仿函数
sort(v.begin(), v.end(), greater<int>());

for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:关系仿函数中最常用的就是greater<>大于

4.3.4 逻辑仿函数
功能描述:

实现逻辑运算
函数原型:

template bool logical_and //逻辑与
template bool logical_or //逻辑或
template bool logical_not //逻辑非

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include <vector>
#include <functional>
#include <algorithm>
void test01()
{
vector<bool> v;
v.push_back(true);
v.push_back(false);
v.push_back(true);
v.push_back(false);

for (vector<bool>::iterator it = v.begin();it!= v.end();it++)
{
cout << *it << " ";
}
cout << endl;

//逻辑非 将v容器搬运到v2中,并执行逻辑非运算
vector<bool> v2;
v2.resize(v.size());
transform(v.begin(), v.end(), v2.begin(), logical_not<bool>());
for (vector<bool>::iterator it = v2.begin(); it != v2.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:逻辑仿函数实际应用较少,了解即可

5 STL- 常用算法
概述:

算法主要是由头文件 组成。

是所有STL头文件中最大的一个,范围涉及到比较、 交换、查找、遍历操作、复制、修改等等

体积很小,只包括几个在序列上面进行简单数学运算的模板函数

定义了一些模板类,用以声明函数对象。

5.1 常用遍历算法
学习目标:

掌握常用的遍历算法
算法简介:

for_each //遍历容器
transform //搬运容器到另一个容器中
5.1.1 for_each
功能描述:

实现遍历容器
函数原型:

for_each(iterator beg, iterator end, _func);

// 遍历算法 遍历容器元素

// beg 开始迭代器

// end 结束迭代器

// _func 函数或者函数对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <algorithm>
#include <vector>

//普通函数
void print01(int val)
{
cout << val << " ";
}
//函数对象
class print02
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

//for_each算法基本用法
void test01() {

vector<int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}

//遍历算法
for_each(v.begin(), v.end(), print01);
cout << endl;

for_each(v.begin(), v.end(), print02());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**for_each在实际开发中是最常用遍历算法,需要熟练掌握

5.1.2 transform
功能描述:

搬运容器到另一个容器中
函数原型:

transform(iterator beg1, iterator end1, iterator beg2, _func);
//beg1 源容器开始迭代器

//end1 源容器结束迭代器

//beg2 目标容器开始迭代器

//_func 函数或者函数对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include<vector>
#include<algorithm>

//常用遍历算法 搬运 transform

class TransForm
{
public:
int operator()(int val)
{
return val;
}

};

class MyPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int>v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}

vector<int>vTarget; //目标容器

vTarget.resize(v.size()); // 目标容器需要提前开辟空间

transform(v.begin(), v.end(), vTarget.begin(), TransForm());

for_each(vTarget.begin(), vTarget.end(), MyPrint());
}

int main() {

test01();

system("pause");

return 0;
}

总结: 搬运的目标容器必须要提前开辟空间,否则无法正常搬运

5.2 常用查找算法
学习目标:

掌握常用的查找算法
算法简介:

find //查找元素
find_if //按条件查找元素
adjacent_find //查找相邻重复元素
binary_search //二分查找法
count //统计元素个数
count_if //按条件统计元素个数
5.2.1 find
功能描述:

查找指定元素,找到返回指定元素的迭代器,找不到返回结束迭代器end()
函数原型:

find(iterator beg, iterator end, value);

// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

// beg 开始迭代器

// end 结束迭代器

// value 查找的元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <algorithm>
#include <vector>
#include <string>
void test01() {

vector<int> v;
for (int i = 0; i < 10; i++) {
v.push_back(i + 1);
}
//查找容器中是否有 5 这个元素
vector<int>::iterator it = find(v.begin(), v.end(), 5);
if (it == v.end())
{
cout << "没有找到!" << endl;
}
else
{
cout << "找到:" << *it << endl;
}
}

class Person {
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
//重载==
bool operator==(const Person& p)
{
if (this->m_Name == p.m_Name && this->m_Age == p.m_Age)
{
return true;
}
return false;
}

public:
string m_Name;
int m_Age;
};

void test02() {

vector<Person> v;

//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);

v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);

vector<Person>::iterator it = find(v.begin(), v.end(), p2);
if (it == v.end())
{
cout << "没有找到!" << endl;
}
else
{
cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
}
}

总结: 利用find可以在容器中找指定的元素,返回值是迭代器

5.2.2 find_if
功能描述:

按条件查找元素
函数原型:

find_if(iterator beg, iterator end, _Pred);

// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

// beg 开始迭代器

// end 结束迭代器

// _Pred 函数或者谓词(返回bool类型的仿函数)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <algorithm>
#include <vector>
#include <string>

//内置数据类型
class GreaterFive
{
public:
bool operator()(int val)
{
return val > 5;
}
};

void test01() {

vector<int> v;
for (int i = 0; i < 10; i++) {
v.push_back(i + 1);
}

vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());
if (it == v.end()) {
cout << "没有找到!" << endl;
}
else {
cout << "找到大于5的数字:" << *it << endl;
}
}

//自定义数据类型
class Person {
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
public:
string m_Name;
int m_Age;
};

class Greater20
{
public:
bool operator()(Person &p)
{
return p.m_Age > 20;
}

};

void test02() {

vector<Person> v;

//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);

v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);

vector<Person>::iterator it = find_if(v.begin(), v.end(), Greater20());
if (it == v.end())
{
cout << "没有找到!" << endl;
}
else
{
cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
}
}

int main() {

//test01();

test02();

system("pause");

return 0;
}

总结:find_if按条件查找使查找更加灵活,提供的仿函数可以改变不同的策略

5.2.3 adjacent_find
功能描述:

查找相邻重复元素
函数原型:

adjacent_find(iterator beg, iterator end);

// 查找相邻重复元素,返回相邻元素的第一个位置的迭代器

// beg 开始迭代器

// end 结束迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <algorithm>
#include <vector>

void test01()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(5);
v.push_back(2);
v.push_back(4);
v.push_back(4);
v.push_back(3);

//查找相邻重复元素
vector<int>::iterator it = adjacent_find(v.begin(), v.end());
if (it == v.end()) {
cout << "找不到!" << endl;
}
else {
cout << "找到相邻重复元素为:" << *it << endl;
}
}

总结:面试题中如果出现查找相邻重复元素,记得用STL中的adjacent_find算法

5.2.4 binary_search
功能描述:

查找指定元素是否存在
函数原型:

bool binary_search(iterator beg, iterator end, value);

// 查找指定的元素,查到 返回true 否则false

// 注意: 在无序序列中不可用

// beg 开始迭代器

// end 结束迭代器

// value 查找的元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <algorithm>
#include <vector>

void test01()
{
vector<int>v;

for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
//二分查找
bool ret = binary_search(v.begin(), v.end(),2);
if (ret)
{
cout << "找到了" << endl;
}
else
{
cout << "未找到" << endl;
}
}

int main() {

test01();

system("pause");

return 0;
}

总结:**二分查找法查找效率很高,值得注意的是查找的容器中元素必须的有序序列

5.2.5 count
功能描述:

统计元素个数
函数原型:

count(iterator beg, iterator end, value);

// 统计元素出现次数

// beg 开始迭代器

// end 结束迭代器

// value 统计的元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <algorithm>
#include <vector>

//内置数据类型
void test01()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
v.push_back(5);
v.push_back(3);
v.push_back(4);
v.push_back(4);

int num = count(v.begin(), v.end(), 4);

cout << "4的个数为: " << num << endl;
}

//自定义数据类型
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
bool operator==(const Person & p)
{
if (this->m_Age == p.m_Age)
{
return true;
}
else
{
return false;
}
}
string m_Name;
int m_Age;
};

void test02()
{
vector<Person> v;

Person p1("刘备", 35);
Person p2("关羽", 35);
Person p3("张飞", 35);
Person p4("赵云", 30);
Person p5("曹操", 25);

v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
v.push_back(p5);

Person p("诸葛亮",35);

int num = count(v.begin(), v.end(), p);
cout << "num = " << num << endl;
}
int main() {

//test01();

test02();

system("pause");

return 0;
}

总结: 统计自定义数据类型时候,需要配合重载 operator==

5.2.6 count_if
功能描述:

按条件统计元素个数
函数原型:

count_if(iterator beg, iterator end, _Pred);

// 按条件统计元素出现次数

// beg 开始迭代器

// end 结束迭代器

// _Pred 谓词

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <algorithm>
#include <vector>

class Greater4
{
public:
bool operator()(int val)
{
return val >= 4;
}
};

//内置数据类型
void test01()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
v.push_back(5);
v.push_back(3);
v.push_back(4);
v.push_back(4);

int num = count_if(v.begin(), v.end(), Greater4());

cout << "大于4的个数为: " << num << endl;
}

//自定义数据类型
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}

string m_Name;
int m_Age;
};

class AgeLess35
{
public:
bool operator()(const Person &p)
{
return p.m_Age < 35;
}
};
void test02()
{
vector<Person> v;

Person p1("刘备", 35);
Person p2("关羽", 35);
Person p3("张飞", 35);
Person p4("赵云", 30);
Person p5("曹操", 25);

v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
v.push_back(p5);

int num = count_if(v.begin(), v.end(), AgeLess35());
cout << "小于35岁的个数:" << num << endl;
}


int main() {

//test01();

test02();

system("pause");

return 0;
}

总结:**按值统计用count,按条件统计用count_if

5.3 常用排序算法
学习目标:

掌握常用的排序算法
算法简介:

sort //对容器内元素进行排序
random_shuffle //洗牌 指定范围内的元素随机调整次序
merge // 容器元素合并,并存储到另一容器中
reverse // 反转指定范围的元素
5.3.1 sort
功能描述:

对容器内元素进行排序
函数原型:

sort(iterator beg, iterator end, _Pred);

// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

// beg 开始迭代器

// end 结束迭代器

// _Pred 谓词

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <algorithm>
#include <vector>

void myPrint(int val)
{
cout << val << " ";
}

void test01() {
vector<int> v;
v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(20);
v.push_back(40);

//sort默认从小到大排序
sort(v.begin(), v.end());
for_each(v.begin(), v.end(), myPrint);
cout << endl;

//从大到小排序
sort(v.begin(), v.end(), greater<int>());
for_each(v.begin(), v.end(), myPrint);
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:sort属于开发中最常用的算法之一,需熟练掌握

5.3.2 random_shuffle
功能描述:

洗牌 指定范围内的元素随机调整次序
函数原型:

random_shuffle(iterator beg, iterator end);

// 指定范围内的元素随机调整次序

// beg 开始迭代器

// end 结束迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <algorithm>
#include <vector>
#include <ctime>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
srand((unsigned int)time(NULL));
vector<int> v;
for(int i = 0 ; i < 10;i++)
{
v.push_back(i);
}
for_each(v.begin(), v.end(), myPrint());
cout << endl;

//打乱顺序
random_shuffle(v.begin(), v.end());
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**random_shuffle洗牌算法比较实用,使用时记得加随机数种子

5.3.3 merge
功能描述:

两个容器元素合并,并存储到另一容器中
函数原型:

merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);

// 容器元素合并,并存储到另一容器中

// 注意: 两个容器必须是有序的

// beg1 容器1开始迭代器 // end1 容器1结束迭代器 // beg2 容器2开始迭代器 // end2 容器2结束迭代器 // dest 目标容器开始迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <algorithm>
#include <vector>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10 ; i++)
{
v1.push_back(i);
v2.push_back(i + 1);
}

vector<int> vtarget;
//目标容器需要提前开辟空间
vtarget.resize(v1.size() + v2.size());
//合并 需要两个有序序列
merge(v1.begin(), v1.end(), v2.begin(), v2.end(), vtarget.begin());
for_each(vtarget.begin(), vtarget.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**merge合并的两个容器必须的有序序列

5.3.4 reverse
功能描述:

将容器内元素进行反转
函数原型:

reverse(iterator beg, iterator end);

// 反转指定范围的元素

// beg 开始迭代器

// end 结束迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <algorithm>
#include <vector>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v;
v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(20);
v.push_back(40);

cout << "反转前: " << endl;
for_each(v.begin(), v.end(), myPrint());
cout << endl;

cout << "反转后: " << endl;

reverse(v.begin(), v.end());
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**reverse反转区间内元素,面试题可能涉及到

5.4 常用拷贝和替换算法
学习目标:

掌握常用的拷贝和替换算法
算法简介:

copy // 容器内指定范围的元素拷贝到另一容器中
replace // 将容器内指定范围的旧元素修改为新元素
replace_if // 容器内指定范围满足条件的元素替换为新元素
swap // 互换两个容器的元素
5.4.1 copy
功能描述:

容器内指定范围的元素拷贝到另一容器中
函数原型:

copy(iterator beg, iterator end, iterator dest);

// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

// beg 开始迭代器

// end 结束迭代器

// dest 目标起始迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <algorithm>
#include <vector>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v1;
for (int i = 0; i < 10; i++) {
v1.push_back(i + 1);
}
vector<int> v2;
v2.resize(v1.size());
copy(v1.begin(), v1.end(), v2.begin());

for_each(v2.begin(), v2.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**利用copy算法在拷贝时,目标容器记得提前开辟空间

5.4.2 replace
功能描述:

将容器内指定范围的旧元素修改为新元素
函数原型:

replace(iterator beg, iterator end, oldvalue, newvalue);

// 将区间内旧元素 替换成 新元素

// beg 开始迭代器

// end 结束迭代器

// oldvalue 旧元素

// newvalue 新元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <algorithm>
#include <vector>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v;
v.push_back(20);
v.push_back(30);
v.push_back(20);
v.push_back(40);
v.push_back(50);
v.push_back(10);
v.push_back(20);

cout << "替换前:" << endl;
for_each(v.begin(), v.end(), myPrint());
cout << endl;

//将容器中的20 替换成 2000
cout << "替换后:" << endl;
replace(v.begin(), v.end(), 20,2000);
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**replace会替换区间内满足条件的元素

5.4.3 replace_if
功能描述:

将区间内满足条件的元素,替换成指定元素
函数原型:

replace_if(iterator beg, iterator end, _pred, newvalue);

// 按条件替换元素,满足条件的替换成指定元素

// beg 开始迭代器

// end 结束迭代器

// _pred 谓词

// newvalue 替换的新元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <algorithm>
#include <vector>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

class ReplaceGreater30
{
public:
bool operator()(int val)
{
return val >= 30;
}

};

void test01()
{
vector<int> v;
v.push_back(20);
v.push_back(30);
v.push_back(20);
v.push_back(40);
v.push_back(50);
v.push_back(10);
v.push_back(20);

cout << "替换前:" << endl;
for_each(v.begin(), v.end(), myPrint());
cout << endl;

//将容器中大于等于的30 替换成 3000
cout << "替换后:" << endl;
replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000);
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**replace_if按条件查找,可以利用仿函数灵活筛选满足的条件

5.4.4 swap
功能描述:

互换两个容器的元素
函数原型:

swap(container c1, container c2);

// 互换两个容器的元素

// c1容器1

// c2容器2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <algorithm>
#include <vector>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++) {
v1.push_back(i);
v2.push_back(i+100);
}

cout << "交换前: " << endl;
for_each(v1.begin(), v1.end(), myPrint());
cout << endl;
for_each(v2.begin(), v2.end(), myPrint());
cout << endl;

cout << "交换后: " << endl;
swap(v1, v2);
for_each(v1.begin(), v1.end(), myPrint());
cout << endl;
for_each(v2.begin(), v2.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**swap交换容器时,注意交换的容器要同种类型

5.5 常用算术生成算法
学习目标:

掌握常用的算术生成算法
注意:

算术生成算法属于小型算法,使用时包含的头文件为 #include
算法简介:

accumulate // 计算容器元素累计总和

fill // 向容器中添加元素

5.5.1 accumulate
功能描述:

计算区间内 容器元素累计总和
函数原型:

accumulate(iterator beg, iterator end, value);

// 计算容器元素累计总和

// beg 开始迭代器

// end 结束迭代器

// value 起始值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <numeric>
#include <vector>
void test01()
{
vector<int> v;
for (int i = 0; i <= 100; i++) {
v.push_back(i);
}

int total = accumulate(v.begin(), v.end(), 0);

cout << "total = " << total << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**accumulate使用时头文件注意是 numeric,这个算法很实用

5.5.2 fill
功能描述:

向容器中填充指定的元素
函数原型:

fill(iterator beg, iterator end, value);

// 向容器中填充元素

// beg 开始迭代器

// end 结束迭代器

// value 填充的值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <numeric>
#include <vector>
#include <algorithm>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{

vector<int> v;
v.resize(10);
//填充
fill(v.begin(), v.end(), 100);

for_each(v.begin(), v.end(), myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:**利用fill可以将容器区间内元素填充为 指定的值

5.6 常用集合算法
学习目标:

掌握常用的集合算法
算法简介:

set_intersection // 求两个容器的交集

set_union // 求两个容器的并集

set_difference // 求两个容器的差集

5.6.1 set_intersection
功能描述:

求两个容器的交集
函数原型:

set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);

// 求两个集合的交集

// 注意:两个集合必须是有序序列

// beg1 容器1开始迭代器 // end1 容器1结束迭代器 // beg2 容器2开始迭代器 // end2 容器2结束迭代器 // dest 目标容器开始迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <vector>
#include <algorithm>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
v2.push_back(i+5);
}

vector<int> vTarget;
//取两个里面较小的值给目标容器开辟空间
vTarget.resize(min(v1.size(), v2.size()));

//返回目标容器的最后一个元素的迭代器地址
vector<int>::iterator itEnd =
set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());

for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

求交集的两个集合必须的有序序列
目标容器开辟空间需要从两个容器中取小值
set_intersection返回值既是交集中最后一个元素的位置
5.6.2 set_union
功能描述:

求两个集合的并集
函数原型:

set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);

// 求两个集合的并集

// 注意:两个集合必须是有序序列

// beg1 容器1开始迭代器 // end1 容器1结束迭代器 // beg2 容器2开始迭代器 // end2 容器2结束迭代器 // dest 目标容器开始迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <vector>
#include <algorithm>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++) {
v1.push_back(i);
v2.push_back(i+5);
}

vector<int> vTarget;
//取两个容器的和给目标容器开辟空间
vTarget.resize(v1.size() + v2.size());

//返回目标容器的最后一个元素的迭代器地址
vector<int>::iterator itEnd =
set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());

for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

求并集的两个集合必须的有序序列
目标容器开辟空间需要两个容器相加
set_union返回值既是并集中最后一个元素的位置
5.6.3 set_difference
功能描述:

求两个集合的差集
函数原型:

set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);

// 求两个集合的差集

// 注意:两个集合必须是有序序列

// beg1 容器1开始迭代器 // end1 容器1结束迭代器 // beg2 容器2开始迭代器 // end2 容器2结束迭代器 // dest 目标容器开始迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <vector>
#include <algorithm>

class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};

void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++) {
v1.push_back(i);
v2.push_back(i+5);
}

vector<int> vTarget;
//取两个里面较大的值给目标容器开辟空间
vTarget.resize( max(v1.size() , v2.size()));

//返回目标容器的最后一个元素的迭代器地址
cout << "v1与v2的差集为: " << endl;
vector<int>::iterator itEnd =
set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());
for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;


cout << "v2与v1的差集为: " << endl;
itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin());
for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
}

int main() {

test01();

system("pause");

return 0;
}

总结:

求差集的两个集合必须的有序序列
目标容器开辟空间需要从两个容器取较大值
set_difference返回值既是差集中最后一个元素的位置

匈牙利命名法

  1. 宏、枚举、常量,用大写字母命名,复合词用下划线隔开。
  2. 类、类型定义和枚举型名的第一个字母大写。
  3. 函数名是复合词的,第一个词采用全部小写,随后每个单词第一个字母大写。
  4. 循环变量可采用 i, j, k 等。
  5. 类的成员变量词头为 m_。
  6. 全局变量词头为 g_ 。
  7. 临时变量词头为 tmp_ 。
  8. 对结构体内的变量命名,遵循变量的具体含义命名原则。
  9. 用小写字母的前缀表示变量的类型,前缀的下一个字母用大写。 
  10. 有些词头可以和其它词头组合。 
1
2
3
4
5
6
7
8
9
10
#define ARRAY_SIZE 24
int g_iFlag; 
classMyClass {
};
void someFunc( ) {
int nArray[ARRAY_SIZE];
unsigned char uchByte;
char szName[ ];
char *pszName = szName;
}
  • 词头类型

    ch char l long
    i integer u unsigned
    b boolean p pointer
    d double s string
    st structure sz ASCII string
    by byte n short int
    H handle x,y 坐标
    dw DWORD fn function
  • 词头变量名

    sig signal msg message
    sb binary semaphores wd watchdog
    sm mutual exclusion semaphores tm timer
    sc counting semaphores

程序注释

分为文件、函数、功能注释。

  • 注释行的数量占到整个源程序的 1/3-1/2。

  • 文件注释位于整个源程序的最开始部分,注释后空两行开始程序正文。它包括:

    • 程序标题
    • 目的、功能说明
    • 文件作者、当前版本、修改信息(最后修改日期等说明)
      • eg: 修改信息: 2000.06.05 John, Initial Version 2000.07.05 Tom, Bug xxxx fixed
  • 函数注释通常置于每函数或过程的开头部分,它应当给出函数或过程的整体说明对于理解程序本身具有引导作用。

    • 模块标题
    • 目的、功能说明
    • 调用格式
    • 接口说明:包括输入、输出、返回值、异常
    • 算法。如果模块中采用了一些复杂的算法
1
2
3
4
5
6
7
8
9
10
11
注释开头应和上一函数空两行
格式:
int assignmentComplete(int iCellId, char *pszMSGData) throw(exception1, exception2)
输入:
int iCellId: MS 所在的小区识别
iCellId 取值:0x00-——0xff
输出:
char *pszMSGData:指配完成消息数据
返回值: 0x00 正常
异常:exception1 异常情况1, exception2 异常情况2
注释后直接开始程序正文,不空行。

其他

建议不要使用 *=,^=, /= 等运算符。
一个函数不要超过 200 行。一个文件应避免超过 2000 行。
避免采用多赋值语句。
不鼓励采用 ?: 操作符。

简单变量引用

简单变量引用可以为同一变量取不同的名字

int Rat;
int & Mouse=Rat;
这样定义之后,Rat 就是 Mouse,这两个名字指向同一内存单元,如:
Mouse=Mickey; //Rat=Mickey
一种更浅显的理解是把引用看成伪装的指针,如 Mouse 可能被编译器解释成 *(& Rat),这种理解可能是正确的。
由于引用严格来说不是对象,在使用时应注意:
① 引用在声明时必须进行初始化;
② 不能声明引用的引用;
③ 不能声明引用数组成指向引用的指针(但可以声明对指针的引用);
④ 为引用提供的初始值必须是一个变量。

C专家编程

访问控制

public 在类的外部可见,一般原则是不要把类的数据做成 public,只有类本身才能改变自己的数据,外部函数只能调用类的成员函数,保证了类的数据只会以合乎规则的方式被更新
protected 只能由该类本身的函数以及从该类所派生的类的函数使用
private 只能被该类的成员函数使用,该声明在类外部是可见的(名字是已知的),但不能访问
以下关键字每次只能用于一条声明,后面不跟冒号
friend 可以是一个函数/类,属于它的函数不属于类的成员函数,但可以像成员函数一样访问类的 private 和 protected 成员
virtual

类中的每个函数声明都需要一个实现,通常在类外部实现,则前面必须附加前缀 ::(全局范围分解符),好处是可以通过使用头文件,使源代码的组织形式更为清晰。类内部实现会使编译后的代码变长,通常用于非常简短的函数,它的代码在编译时在声明处自动展开,在运行时就不必付出函数调用的代价。

构造函数的名字总是和类的名字一样

当类的一个对象被创建时,构造函数会被自动调用,不应该显式调用构造函数。至于全局和静态对象,它们的构造函数会在程序开始时被自动调用,而当程序终止时,它们的析构函数会被自动调用。

继承

继承在两个类之间(而不是两个函数之间)进行

重载

复用一个现存的(函数或操作符)名字,操作一个不同的类型。总是在编译时进行解析

重载后的操作符的优先级和操作数(编译器行话中的”arity”)与原先操作符相同

多态

多态是指一个函数或操作符只有一个名字
在(基类)成员函数前加上 virtual 即多态
函数的原型必须相同,由运行时系统进行解析调用哪一个函数

C 与 C++

C++ 对 C 的改进

  • char b[3]=“Bob" 这样的表达式在 C 中合法,C++ 中被认为是一个错误。

  • 类型转换既可写成更顺眼的 float(i) 形式,也可写成 (float)i 这样的 C 风格

  • C++ 允许一个常量整数来定义数组的大小,但在 C 中错误。
    const int size = 128;
    char a[size];

  • 声明可以穿插于语句之间。在 C 中,一个语句块中所有的声明都必须放在所有语句的前面。C++ 去掉了这个限制。

C++ 中存在,但在 C 中却不存在的限制

  • C++ 中,用户代码不能调用 main() 函数,但在 C 中却允许(这种情况极为罕见)

  • 完整的函数原型声明在 C++ 中是必须的,但在 C 中没这么严格

  • C++ 中,由 typedef 定义的名字不能与已有的结构标签冲突,但在 C 中却允许(它们分属不同的名字空间)

  • void* 指针赋值给另一个类型的指针时,C++ 规定必须进行强制类型转换,但在 C 中却无必要

在 C++ 和 C 中含义不一样的特性

  • C++ 至少增加了十几个关键字。这些关键字在 C 中可以作为标识符使用,但如果这样做了,用 C++ 编译器时会报错。

  • C++ 中声明可以出现在语句可以出现的任何地方。在 C 的代码块中,所有的声明必须出现在所有语句的前面。

  • C++ 中一个内层范围的结构名将会隐藏外层空间中相同的对象名。在 C 中则非如此。

  • C++ 中字符常量的类型是 char,但在 C 中,它们的类型是 int。即在 C++ 中,sizeof('a') 的结果是 1,而在 C 中值要大一些。

  • C++ 增加了 // 注释符,有时会在两种语言中产生微妙而怪异的差别

1

尽量使用的C++特性:

构造函数和析构函数,但只限于函数体非常简单的例子
重载,包括操作符重载和 I/O
单重继承和多态

避免使用的C++特性:
模板
异常
虚基类
多重继承

0x0 References

C++ 匠心之作
《C专家编程》
《C++ Primer Plus》
《C++ Primer》

0x0 Postscript

 Comments